[PDF] Manifolds Ii - eBooks Review

Manifolds Ii


Manifolds Ii
DOWNLOAD

Download Manifolds Ii PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Manifolds Ii book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Manifolds Ii


Manifolds Ii
DOWNLOAD
Author : Paul Bracken
language : en
Publisher: BoD – Books on Demand
Release Date : 2019-05-22

Manifolds Ii written by Paul Bracken and has been published by BoD – Books on Demand this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-05-22 with Mathematics categories.


Differential geometry is a very active field of research and has many applications to areas such as physics, in particular gravity. The chapters in this book cover a number of subjects that will be of interest to workers in these areas. It is hoped that these chapters will be able to provide a useful resource for researchers with regard to current fields of research in this important area.



Several Complex Variables And Complex Manifolds


Several Complex Variables And Complex Manifolds
DOWNLOAD
Author : Mike Field
language : en
Publisher: Cambridge University Press
Release Date : 1982

Several Complex Variables And Complex Manifolds written by Mike Field and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 1982 with Complex manifolds categories.


Annotation This self-contained and relatively elementary introduction to functions of several complex variables and complex (especially compact) manifolds is intended to be a synthesis of those topics and a broad introduction to the field. Part I is suitable for advanced undergraduates and beginning postgraduates whilst Part II is written more for the graduate student. The work as a whole will be useful to professional mathematicians or mathematical physicists who wish to acquire a working knowledge of this area of mathematics. Many exercises have been included and indeed they form an integral part of the text. The prerequisites for understanding Part I would be met by any mathematics student with a first degree and together the two parts provide an introduction to the more advanced works in the subject.



Introduction To Smooth Manifolds


Introduction To Smooth Manifolds
DOWNLOAD
Author : John M. Lee
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-03-09

Introduction To Smooth Manifolds written by John M. Lee and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-03-09 with Mathematics categories.


Manifolds are everywhere. These generalizations of curves and surfaces to arbitrarily many dimensions provide the mathematical context for under standing "space" in all of its manifestations. Today, the tools of manifold theory are indispensable in most major subfields of pure mathematics, and outside of pure mathematics they are becoming increasingly important to scientists in such diverse fields as genetics, robotics, econometrics, com puter graphics, biomedical imaging, and, of course, the undisputed leader among consumers (and inspirers) of mathematics-theoretical physics. No longer a specialized subject that is studied only by differential geometers, manifold theory is now one of the basic skills that all mathematics students should acquire as early as possible. Over the past few centuries, mathematicians have developed a wondrous collection of conceptual machines designed to enable us to peer ever more deeply into the invisible world of geometry in higher dimensions. Once their operation is mastered, these powerful machines enable us to think geometrically about the 6-dimensional zero set of a polynomial in four complex variables, or the lO-dimensional manifold of 5 x 5 orthogonal ma trices, as easily as we think about the familiar 2-dimensional sphere in ]R3.



An Introduction To Manifolds


An Introduction To Manifolds
DOWNLOAD
Author : Loring W. Tu
language : en
Publisher: Springer Science & Business Media
Release Date : 2010-10-05

An Introduction To Manifolds written by Loring W. Tu and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-10-05 with Mathematics categories.


Manifolds, the higher-dimensional analogs of smooth curves and surfaces, are fundamental objects in modern mathematics. Combining aspects of algebra, topology, and analysis, manifolds have also been applied to classical mechanics, general relativity, and quantum field theory. In this streamlined introduction to the subject, the theory of manifolds is presented with the aim of helping the reader achieve a rapid mastery of the essential topics. By the end of the book the reader should be able to compute, at least for simple spaces, one of the most basic topological invariants of a manifold, its de Rham cohomology. Along the way, the reader acquires the knowledge and skills necessary for further study of geometry and topology. The requisite point-set topology is included in an appendix of twenty pages; other appendices review facts from real analysis and linear algebra. Hints and solutions are provided to many of the exercises and problems. This work may be used as the text for a one-semester graduate or advanced undergraduate course, as well as by students engaged in self-study. Requiring only minimal undergraduate prerequisites, 'Introduction to Manifolds' is also an excellent foundation for Springer's GTM 82, 'Differential Forms in Algebraic Topology'.



Modern Geometry Methods And Applications


Modern Geometry Methods And Applications
DOWNLOAD
Author : B.A. Dubrovin
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06

Modern Geometry Methods And Applications written by B.A. Dubrovin and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.


Up until recently, Riemannian geometry and basic topology were not included, even by departments or faculties of mathematics, as compulsory subjects in a university-level mathematical education. The standard courses in the classical differential geometry of curves and surfaces which were given instead (and still are given in some places) have come gradually to be viewed as anachronisms. However, there has been hitherto no unanimous agreement as to exactly how such courses should be brought up to date, that is to say, which parts of modern geometry should be regarded as absolutely essential to a modern mathematical education, and what might be the appropriate level of abstractness of their exposition. The task of designing a modernized course in geometry was begun in 1971 in the mechanics division of the Faculty of Mechanics and Mathematics of Moscow State University. The subject-matter and level of abstractness of its exposition were dictated by the view that, in addition to the geometry of curves and surfaces, the following topics are certainly useful in the various areas of application of mathematics (especially in elasticity and relativity, to name but two), and are therefore essential: the theory of tensors (including covariant differentiation of them); Riemannian curvature; geodesics and the calculus of variations (including the conservation laws and Hamiltonian formalism); the particular case of skew-symmetric tensors (i. e.



Analysis Manifolds And Physics Part Ii Revised And Enlarged Edition


Analysis Manifolds And Physics Part Ii Revised And Enlarged Edition
DOWNLOAD
Author : Y. Choquet-Bruhat
language : en
Publisher: Elsevier
Release Date : 2000-11-08

Analysis Manifolds And Physics Part Ii Revised And Enlarged Edition written by Y. Choquet-Bruhat and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2000-11-08 with Science categories.


Twelve problems have been added to the first edition; four of them are supplements to problems in the first edition. The others deal with issues that have become important, since the first edition of Volume II, in recent developments of various areas of physics. All the problems have their foundations in volume 1 of the 2-Volume set Analysis, Manifolds and Physics. It would have been prohibitively expensive to insert the new problems at their respective places. They are grouped together at the end of this volume, their logical place is indicated by a number of parenthesis following the title.



Torus Actions On Symplectic Manifolds


Torus Actions On Symplectic Manifolds
DOWNLOAD
Author : Michèle Audin
language : en
Publisher: Birkhäuser
Release Date : 2012-12-06

Torus Actions On Symplectic Manifolds written by Michèle Audin and has been published by Birkhäuser this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.


How I have (re-)written this book The book the reader has in hand was supposed to be a new edition of [14]. I have hesitated quite a long time before deciding to do the re-writing work-the first edition has been sold out for a few years. There was absolutely no question of just correcting numerous misprints and a few mathematical errors. When I wrote the first edition, in 1989, the convexity and Duistermaat-Heckman theorems together with the irruption of toric varieties on the scene of symplectic geometry, due to Delzant, around which the book was organized, were still rather recent (less than ten years). I myself was rather happy with a small contribution I had made to the subject. I was giving a post-graduate course on all that and, well, these were lecture notes, just lecture notes. By chance, the book turned out to be rather popular: during the years since then, I had the opportunity to meet quite a few people(1) who kindly pretended to have learnt the subject in this book. However, the older book does not satisfy at all the idea I have now of what a good book should be. So that this "new edition" is, indeed, another book.



Symplectic Geometry Of Integrable Hamiltonian Systems


Symplectic Geometry Of Integrable Hamiltonian Systems
DOWNLOAD
Author : Michèle Audin
language : en
Publisher: Birkhäuser
Release Date : 2012-12-06

Symplectic Geometry Of Integrable Hamiltonian Systems written by Michèle Audin and has been published by Birkhäuser this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.


Among all the Hamiltonian systems, the integrable ones have special geometric properties; in particular, their solutions are very regular and quasi-periodic. The quasi-periodicity of the solutions of an integrable system is a result of the fact that the system is invariant under a (semi-global) torus action. It is thus natural to investigate the symplectic manifolds that can be endowed with a (global) torus action. This leads to symplectic toric manifolds (Part B of this book). Physics makes a surprising come-back in Part A: to describe Mirror Symmetry, one looks for a special kind of Lagrangian submanifolds and integrable systems, the special Lagrangians. Furthermore, integrable Hamiltonian systems on punctured cotangent bundles are a starting point for the study of contact toric manifolds (Part C of this book).



The Geometry Of Curvature Homogeneous Pseudo Riemannian Manifolds


The Geometry Of Curvature Homogeneous Pseudo Riemannian Manifolds
DOWNLOAD
Author : Peter B. Gilkey
language : en
Publisher: Imperial College Press
Release Date : 2007

The Geometry Of Curvature Homogeneous Pseudo Riemannian Manifolds written by Peter B. Gilkey and has been published by Imperial College Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007 with Mathematics categories.


Pseudo-Riemannian geometry is an active research field not only in differential geometry but also in mathematical physics where the higher signature geometries play a role in brane theory. An essential reference tool for research mathematicians and physicists, this book also serves as a useful introduction to students entering this active and rapidly growing field. The author presents a comprehensive treatment of several aspects of pseudo-Riemannian geometry, including the spectral geometry of the curvature tensor, curvature homogeneity, and StanilovOCoTsankovOCoVidev theory."



Lectures On The Geometry Of Manifolds 2nd Edition


Lectures On The Geometry Of Manifolds 2nd Edition
DOWNLOAD
Author : Liviu I Nicolaescu
language : en
Publisher: World Scientific
Release Date : 2007-09-27

Lectures On The Geometry Of Manifolds 2nd Edition written by Liviu I Nicolaescu and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-09-27 with Mathematics categories.


The goal of this book is to introduce the reader to some of the most frequently used techniques in modern global geometry. Suited to the beginning graduate student willing to specialize in this very challenging field, the necessary prerequisite is a good knowledge of several variables calculus, linear algebra and point-set topology.The book's guiding philosophy is, in the words of Newton, that “in learning the sciences examples are of more use than precepts”. We support all the new concepts by examples and, whenever possible, we tried to present several facets of the same issue.While we present most of the local aspects of classical differential geometry, the book has a “global and analytical bias”. We develop many algebraic-topological techniques in the special context of smooth manifolds such as Poincaré duality, Thom isomorphism, intersection theory, characteristic classes and the Gauss-Bonnet theorem.We devoted quite a substantial part of the book to describing the analytic techniques which have played an increasingly important role during the past decades. Thus, the last part of the book discusses elliptic equations, including elliptic Lpand Hölder estimates, Fredholm theory, spectral theory, Hodge theory, and applications of these. The last chapter is an in-depth investigation of a very special, but fundamental class of elliptic operators, namely, the Dirac type operators.The second edition has many new examples and exercises, and an entirely new chapter on classical integral geometry where we describe some mathematical gems which, undeservedly, seem to have disappeared from the contemporary mathematical limelight.