[PDF] Markov Chain Monte Carlo In Practice - eBooks Review

Markov Chain Monte Carlo In Practice


Markov Chain Monte Carlo In Practice
DOWNLOAD

Download Markov Chain Monte Carlo In Practice PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Markov Chain Monte Carlo In Practice book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Markov Chain Monte Carlo In Practice


Markov Chain Monte Carlo In Practice
DOWNLOAD
Author : W.R. Gilks
language : en
Publisher: CRC Press
Release Date : 1995-12-01

Markov Chain Monte Carlo In Practice written by W.R. Gilks and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 1995-12-01 with Mathematics categories.


In a family study of breast cancer, epidemiologists in Southern California increase the power for detecting a gene-environment interaction. In Gambia, a study helps a vaccination program reduce the incidence of Hepatitis B carriage. Archaeologists in Austria place a Bronze Age site in its true temporal location on the calendar scale. And in France,



Markov Chain Monte Carlo In Practice


Markov Chain Monte Carlo In Practice
DOWNLOAD
Author : W.R. Gilks
language : en
Publisher: CRC Press
Release Date : 1995-12-01

Markov Chain Monte Carlo In Practice written by W.R. Gilks and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 1995-12-01 with Mathematics categories.


In a family study of breast cancer, epidemiologists in Southern California increase the power for detecting a gene-environment interaction. In Gambia, a study helps a vaccination program reduce the incidence of Hepatitis B carriage. Archaeologists in Austria place a Bronze Age site in its true temporal location on the calendar scale. And in France, researchers map a rare disease with relatively little variation. Each of these studies applied Markov chain Monte Carlo methods to produce more accurate and inclusive results. General state-space Markov chain theory has seen several developments that have made it both more accessible and more powerful to the general statistician. Markov Chain Monte Carlo in Practice introduces MCMC methods and their applications, providing some theoretical background as well. The authors are researchers who have made key contributions in the recent development of MCMC methodology and its application. Considering the broad audience, the editors emphasize practice rather than theory, keeping the technical content to a minimum. The examples range from the simplest application, Gibbs sampling, to more complex applications. The first chapter contains enough information to allow the reader to start applying MCMC in a basic way. The following chapters cover main issues, important concepts and results, techniques for implementing MCMC, improving its performance, assessing model adequacy, choosing between models, and applications and their domains. Markov Chain Monte Carlo in Practice is a thorough, clear introduction to the methodology and applications of this simple idea with enormous potential. It shows the importance of MCMC in real applications, such as archaeology, astronomy, biostatistics, genetics, epidemiology, and image analysis, and provides an excellent base for MCMC to be applied to other fields as well.



Handbook Of Markov Chain Monte Carlo


Handbook Of Markov Chain Monte Carlo
DOWNLOAD
Author : Steve Brooks
language : en
Publisher: CRC Press
Release Date : 2011-05-10

Handbook Of Markov Chain Monte Carlo written by Steve Brooks and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-05-10 with Mathematics categories.


Since their popularization in the 1990s, Markov chain Monte Carlo (MCMC) methods have revolutionized statistical computing and have had an especially profound impact on the practice of Bayesian statistics. Furthermore, MCMC methods have enabled the development and use of intricate models in an astonishing array of disciplines as diverse as fisherie



Markov Chain Monte Carlo


Markov Chain Monte Carlo
DOWNLOAD
Author : Dani Gamerman
language : en
Publisher: CRC Press
Release Date : 1997-10-01

Markov Chain Monte Carlo written by Dani Gamerman and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 1997-10-01 with Mathematics categories.


Bridging the gap between research and application, Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference provides a concise, and integrated account of Markov chain Monte Carlo (MCMC) for performing Bayesian inference. This volume, which was developed from a short course taught by the author at a meeting of Brazilian statisticians and probabilists, retains the didactic character of the original course text. The self-contained text units make MCMC accessible to scientists in other disciplines as well as statisticians. It describes each component of the theory in detail and outlines related software, which is of particular benefit to applied scientists.



Markov Chain Monte Carlo In Practice


Markov Chain Monte Carlo In Practice
DOWNLOAD
Author : W. R. Gilks
language : en
Publisher: Springer
Release Date : 2013-08-21

Markov Chain Monte Carlo In Practice written by W. R. Gilks and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-08-21 with Mathematics categories.




Principles And Methods For Data Science


Principles And Methods For Data Science
DOWNLOAD
Author :
language : en
Publisher: Elsevier
Release Date : 2020-05-28

Principles And Methods For Data Science written by and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-05-28 with Mathematics categories.


Principles and Methods for Data Science, Volume 43 in the Handbook of Statistics series, highlights new advances in the field, with this updated volume presenting interesting and timely topics, including Competing risks, aims and methods, Data analysis and mining of microbial community dynamics, Support Vector Machines, a robust prediction method with applications in bioinformatics, Bayesian Model Selection for Data with High Dimension, High dimensional statistical inference: theoretical development to data analytics, Big data challenges in genomics, Analysis of microarray gene expression data using information theory and stochastic algorithm, Hybrid Models, Markov Chain Monte Carlo Methods: Theory and Practice, and more. - Provides the authority and expertise of leading contributors from an international board of authors - Presents the latest release in the Handbook of Statistics series - Updated release includes the latest information on Principles and Methods for Data Science



Markov Chains


Markov Chains
DOWNLOAD
Author : Pierre Bremaud
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-03-09

Markov Chains written by Pierre Bremaud and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-03-09 with Mathematics categories.


In this book, the author begins with the elementary theory of Markov chains and very progressively brings the reader to the more advanced topics. He gives a useful review of probability that makes the book self-contained, and provides an appendix with detailed proofs of all the prerequisites from calculus, algebra, and number theory. A number of carefully chosen problems of varying difficulty are proposed at the close of each chapter, and the mathematics are slowly and carefully developed, in order to make self-study easier. The author treats the classic topics of Markov chain theory, both in discrete time and continuous time, as well as the connected topics such as finite Gibbs fields, nonhomogeneous Markov chains, discrete- time regenerative processes, Monte Carlo simulation, simulated annealing, and queuing theory. The result is an up-to-date textbook on stochastic processes. Students and researchers in operations research and electrical engineering, as well as in physics and biology, will find it very accessible and relevant.



Reinforcement Learning And Optimal Control


Reinforcement Learning And Optimal Control
DOWNLOAD
Author : Dimitri Bertsekas
language : en
Publisher: Athena Scientific
Release Date : 2019-07-01

Reinforcement Learning And Optimal Control written by Dimitri Bertsekas and has been published by Athena Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-07-01 with Computers categories.


This book considers large and challenging multistage decision problems, which can be solved in principle by dynamic programming (DP), but their exact solution is computationally intractable. We discuss solution methods that rely on approximations to produce suboptimal policies with adequate performance. These methods are collectively known by several essentially equivalent names: reinforcement learning, approximate dynamic programming, neuro-dynamic programming. They have been at the forefront of research for the last 25 years, and they underlie, among others, the recent impressive successes of self-learning in the context of games such as chess and Go. Our subject has benefited greatly from the interplay of ideas from optimal control and from artificial intelligence, as it relates to reinforcement learning and simulation-based neural network methods. One of the aims of the book is to explore the common boundary between these two fields and to form a bridge that is accessible by workers with background in either field. Another aim is to organize coherently the broad mosaic of methods that have proved successful in practice while having a solid theoretical and/or logical foundation. This may help researchers and practitioners to find their way through the maze of competing ideas that constitute the current state of the art. This book relates to several of our other books: Neuro-Dynamic Programming (Athena Scientific, 1996), Dynamic Programming and Optimal Control (4th edition, Athena Scientific, 2017), Abstract Dynamic Programming (2nd edition, Athena Scientific, 2018), and Nonlinear Programming (Athena Scientific, 2016). However, the mathematical style of this book is somewhat different. While we provide a rigorous, albeit short, mathematical account of the theory of finite and infinite horizon dynamic programming, and some fundamental approximation methods, we rely more on intuitive explanations and less on proof-based insights. Moreover, our mathematical requirements are quite modest: calculus, a minimal use of matrix-vector algebra, and elementary probability (mathematically complicated arguments involving laws of large numbers and stochastic convergence are bypassed in favor of intuitive explanations). The book illustrates the methodology with many examples and illustrations, and uses a gradual expository approach, which proceeds along four directions: (a) From exact DP to approximate DP: We first discuss exact DP algorithms, explain why they may be difficult to implement, and then use them as the basis for approximations. (b) From finite horizon to infinite horizon problems: We first discuss finite horizon exact and approximate DP methodologies, which are intuitive and mathematically simple, and then progress to infinite horizon problems. (c) From deterministic to stochastic models: We often discuss separately deterministic and stochastic problems, since deterministic problems are simpler and offer special advantages for some of our methods. (d) From model-based to model-free implementations: We first discuss model-based implementations, and then we identify schemes that can be appropriately modified to work with a simulator. The book is related and supplemented by the companion research monograph Rollout, Policy Iteration, and Distributed Reinforcement Learning (Athena Scientific, 2020), which focuses more closely on several topics related to rollout, approximate policy iteration, multiagent problems, discrete and Bayesian optimization, and distributed computation, which are either discussed in less detail or not covered at all in the present book. The author's website contains class notes, and a series of videolectures and slides from a 2021 course at ASU, which address a selection of topics from both books.



Advanced Markov Chain Monte Carlo Methods


Advanced Markov Chain Monte Carlo Methods
DOWNLOAD
Author : Faming Liang
language : en
Publisher: John Wiley & Sons
Release Date : 2011-07-05

Advanced Markov Chain Monte Carlo Methods written by Faming Liang and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-07-05 with Mathematics categories.


Markov Chain Monte Carlo (MCMC) methods are now an indispensable tool in scientific computing. This book discusses recent developments of MCMC methods with an emphasis on those making use of past sample information during simulations. The application examples are drawn from diverse fields such as bioinformatics, machine learning, social science, combinatorial optimization, and computational physics. Key Features: Expanded coverage of the stochastic approximation Monte Carlo and dynamic weighting algorithms that are essentially immune to local trap problems. A detailed discussion of the Monte Carlo Metropolis-Hastings algorithm that can be used for sampling from distributions with intractable normalizing constants. Up-to-date accounts of recent developments of the Gibbs sampler. Comprehensive overviews of the population-based MCMC algorithms and the MCMC algorithms with adaptive proposals. This book can be used as a textbook or a reference book for a one-semester graduate course in statistics, computational biology, engineering, and computer sciences. Applied or theoretical researchers will also find this book beneficial.



Markov Chain Monte Carlo


Markov Chain Monte Carlo
DOWNLOAD
Author : Dani Gamerman
language : en
Publisher: CRC Press
Release Date : 2006-05-10

Markov Chain Monte Carlo written by Dani Gamerman and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-05-10 with Mathematics categories.


While there have been few theoretical contributions on the Markov Chain Monte Carlo (MCMC) methods in the past decade, current understanding and application of MCMC to the solution of inference problems has increased by leaps and bounds. Incorporating changes in theory and highlighting new applications, Markov Chain Monte Carlo: Stochastic Simul