[PDF] Markov S Theorem And 100 Years Of The Uniqueness Conjecture - eBooks Review

Markov S Theorem And 100 Years Of The Uniqueness Conjecture


Markov S Theorem And 100 Years Of The Uniqueness Conjecture
DOWNLOAD

Download Markov S Theorem And 100 Years Of The Uniqueness Conjecture PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Markov S Theorem And 100 Years Of The Uniqueness Conjecture book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Markov S Theorem And 100 Years Of The Uniqueness Conjecture


Markov S Theorem And 100 Years Of The Uniqueness Conjecture
DOWNLOAD
Author : Martin Aigner
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-07-18

Markov S Theorem And 100 Years Of The Uniqueness Conjecture written by Martin Aigner and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-07-18 with Mathematics categories.


This book takes the reader on a mathematical journey, from a number-theoretic point of view, to the realm of Markov’s theorem and the uniqueness conjecture, gradually unfolding many beautiful connections until everything falls into place in the proof of Markov’s theorem. What makes the Markov theme so attractive is that it appears in an astounding variety of different fields, from number theory to combinatorics, from classical groups and geometry to the world of graphs and words. On the way, there are also introductory forays into some fascinating topics that do not belong to the standard curriculum, such as Farey fractions, modular and free groups, hyperbolic planes, and algebraic words. The book closes with a discussion of the current state of knowledge about the uniqueness conjecture, which remains an open challenge to this day. All the material should be accessible to upper-level undergraduates with some background in number theory, and anything beyond this level is fully explained in the text. This is not a monograph in the usual sense concentrating on a specific topic. Instead, it narrates in five parts – Numbers, Trees, Groups, Words, Finale – the story of a discovery in one field and its many manifestations in others, as a tribute to a great mathematical achievement and as an intellectual pleasure, contemplating the marvellous unity of all mathematics.



Combinatorics On Words


Combinatorics On Words
DOWNLOAD
Author : Robert Mercaş
language : en
Publisher: Springer Nature
Release Date : 2019-09-02

Combinatorics On Words written by Robert Mercaş and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-09-02 with Mathematics categories.


This book constitutes the refereed proceedings of the 12th International Conference on Combinatorics on Words, WORDS 2019, held in Loughborough, UK, in September 2019. The 21 revised full papers presented in this book together with 5 invited talks were carefully reviewed and selected from 34 submissions. WORDS is the main conference series devoted to the mathematical theory of words. In particular, the combinatorial, algebraic and algorithmic aspects of words are emphasized. Motivations may also come from other domains such as theoretical computer science, bioinformatics, digital geometry, symbolic dynamics, numeration systems, text processing, number theory, etc.



Quadratic Number Fields


Quadratic Number Fields
DOWNLOAD
Author : Franz Lemmermeyer
language : en
Publisher: Springer Nature
Release Date : 2021-09-18

Quadratic Number Fields written by Franz Lemmermeyer and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-09-18 with Mathematics categories.


This undergraduate textbook provides an elegant introduction to the arithmetic of quadratic number fields, including many topics not usually covered in books at this level. Quadratic fields offer an introduction to algebraic number theory and some of its central objects: rings of integers, the unit group, ideals and the ideal class group. This textbook provides solid grounding for further study by placing the subject within the greater context of modern algebraic number theory. Going beyond what is usually covered at this level, the book introduces the notion of modularity in the context of quadratic reciprocity, explores the close links between number theory and geometry via Pell conics, and presents applications to Diophantine equations such as the Fermat and Catalan equations as well as elliptic curves. Throughout, the book contains extensive historical comments, numerous exercises (with solutions), and pointers to further study. Assuming a moderate background in elementary number theory and abstract algebra, Quadratic Number Fields offers an engaging first course in algebraic number theory, suitable for upper undergraduate students.



Open Problems In Algebraic Combinatorics


Open Problems In Algebraic Combinatorics
DOWNLOAD
Author : Christine Berkesch
language : en
Publisher: American Mathematical Society
Release Date : 2024-08-21

Open Problems In Algebraic Combinatorics written by Christine Berkesch and has been published by American Mathematical Society this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-08-21 with Mathematics categories.


In their preface, the editors describe algebraic combinatorics as the area of combinatorics concerned with exact, as opposed to approximate, results and which puts emphasis on interaction with other areas of mathematics, such as algebra, topology, geometry, and physics. It is a vibrant area, which saw several major developments in recent years. The goal of the 2022 conference Open Problems in Algebraic Combinatorics 2022 was to provide a forum for exchanging promising new directions and ideas. The current volume includes contributions coming from the talks at the conference, as well as a few other contributions written specifically for this volume. The articles cover the majority of topics in algebraic combinatorics with the aim of presenting recent important research results and also important open problems and conjectures encountered in this research. The editors hope that this book will facilitate the exchange of ideas in algebraic combinatorics.



Low Dimensional Topology And Number Theory


Low Dimensional Topology And Number Theory
DOWNLOAD
Author : Masanori Morishita
language : en
Publisher: Springer Nature
Release Date : 2025-03-02

Low Dimensional Topology And Number Theory written by Masanori Morishita and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-03-02 with Mathematics categories.


This book is the result of research initiatives formed during the workshop "Low Dimensional Topology and Number Theory XIII" at Kyushu University in 2022. It is also dedicated to the memory of Professor Toshie Takata, who has been a main figure of the session chairs for the series of annual workshops since 2009. The activity was aimed at understanding and deepening recent developments of lively and fruitful interactions between low-dimensional topology and number theory over the past decades. In this volume of proceedings, the reader will find research papers as well as survey articles, including open problems, at the interface between classical and quantum topology, and algebraic and analytic number theory, written by leading experts and active researchers in the respective fields. Topics include, among others, the strong slope conjecture; Kashiwara–Vergne Lie algebra; braids and fibered double branched covers of 3-manifolds; Temperley–Lieb–Jones category andconformal blocks; WRT invariants and false theta functions; the colored Jones polynomial of the figure-eight knot; potential functions and A-polynomials; l-adic Galois polylogarithms; Dijkgraaf–Witten invariants in Bloch groups; analogies between knots and primes in arithmetic topology; normalized Jones polynomials for rational links; Iwasawa main conjecture; Weber’s class number problem. The book provides a valuable resource for researchers and graduate students interested in topics related to both low-dimensional topology and number theory.



Farey Sequences


Farey Sequences
DOWNLOAD
Author : Andrey O. Matveev
language : en
Publisher: Walter de Gruyter GmbH & Co KG
Release Date : 2017-11-07

Farey Sequences written by Andrey O. Matveev and has been published by Walter de Gruyter GmbH & Co KG this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-11-07 with Mathematics categories.


As a first comprehensive overview on Farey sequences and subsequences, this monograph is intended as a reference for anyone looking for specific material or formulas related to the subject. Duality of subsequences and maps between them are discussed and explicit proofs are shown in detail. From the Content Basic structural and enumerative properties of Farey sequences, Collective decision making, Committee methods in pattern recognition, Farey duality, Farey sequence, Fundamental Farey subsequences, Monotone bijections between Farey subsequences



Research Directions In Number Theory


Research Directions In Number Theory
DOWNLOAD
Author : Alina Bucur
language : en
Publisher: Springer Nature
Release Date : 2024-06-26

Research Directions In Number Theory written by Alina Bucur and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-06-26 with Mathematics categories.


This is the fifth proceedings volume published under the Women in Numbers umbrella. The WIN workshops and their proceedings volumes are part of the WIN network, aimed at highlighting the research of women and gender minorities in number theory as well as increasing their participation and boosting their potential collaborations in number theory and related fields. The volume contains research articles in the mathematical area of number theory, written by teams of scholars at all levels in the field. More information about the network, its goals and purpose, past and future conferences, and past proceedings volumes, can be found on the WIN website. This volume contains research outcomes and results produced by the collaborative research groups created under the Women in Numbers V workshop, the 5th in its series. The actual workshop was to take place in 2020 at the Banff International Research Station in Banff, Canada, but could not take place onsite due to COVID. The associated research groups, each consisting of 1-2 leaders and 2-4 junior researchers, were formed nevertheless and their collaborations went ahead in purely virtual form, as well as other papers by author teams for which at least 50% of the authors identify as women or gender minorities. These contributions include original research and survey articles in a wide variety of subareas within number theory. The former present new cutting-edge research that will be of interest to experts in the field, to the benefit of their own research. The survey articles serve as an accessible introduction for graduate students and other readers to areas of number theory that may be outside their area of expertise.



Integrability Quantization And Geometry I Integrable Systems


Integrability Quantization And Geometry I Integrable Systems
DOWNLOAD
Author : Sergey Novikov
language : en
Publisher: American Mathematical Soc.
Release Date : 2021-04-12

Integrability Quantization And Geometry I Integrable Systems written by Sergey Novikov and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-04-12 with Education categories.


This book is a collection of articles written in memory of Boris Dubrovin (1950–2019). The authors express their admiration for his remarkable personality and for the contributions he made to mathematical physics. For many of the authors, Dubrovin was a friend, colleague, inspiring mentor, and teacher. The contributions to this collection of papers are split into two parts: “Integrable Systems” and “Quantum Theories and Algebraic Geometry”, reflecting the areas of main scientific interests of Dubrovin. Chronologically, these interests may be divided into several parts: integrable systems, integrable systems of hydrodynamic type, WDVV equations (Frobenius manifolds), isomonodromy equations (flat connections), and quantum cohomology. The articles included in the first part are more or less directly devoted to these areas (primarily with the first three listed above). The second part contains articles on quantum theories and algebraic geometry and is less directly connected with Dubrovin's early interests.



Computation And Combinatorics In Dynamics Stochastics And Control


Computation And Combinatorics In Dynamics Stochastics And Control
DOWNLOAD
Author : Elena Celledoni
language : en
Publisher: Springer
Release Date : 2019-01-13

Computation And Combinatorics In Dynamics Stochastics And Control written by Elena Celledoni and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-01-13 with Mathematics categories.


The Abel Symposia volume at hand contains a collection of high-quality articles written by the world’s leading experts, and addressing all mathematicians interested in advances in deterministic and stochastic dynamical systems, numerical analysis, and control theory. In recent years we have witnessed a remarkable convergence between individual mathematical disciplines that approach deterministic and stochastic dynamical systems from mathematical analysis, computational mathematics and control theoretical perspectives. Breakthrough developments in these fields now provide a common mathematical framework for attacking many different problems related to differential geometry, analysis and algorithms for stochastic and deterministic dynamics. In the Abel Symposium 2016, which took place from August 16-19 in Rosendal near Bergen, leading researchers in the fields of deterministic and stochastic differential equations, control theory, numerical analysis, algebra and random processes presented and discussed the current state of the art in these diverse fields. The current Abel Symposia volume may serve as a point of departure for exploring these related but diverse fields of research, as well as an indicator of important current and future developments in modern mathematics.



Helix Structures In Quantum Cohomology Of Fano Varieties


Helix Structures In Quantum Cohomology Of Fano Varieties
DOWNLOAD
Author : Giordano Cotti
language : en
Publisher: Springer Nature
Release Date : 2024-10-28

Helix Structures In Quantum Cohomology Of Fano Varieties written by Giordano Cotti and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-10-28 with Mathematics categories.


This research monograph provides a comprehensive study of a conjecture initially proposed by the second author at the 1998 International Congress of Mathematicians (ICM). This conjecture asserts the equivalence, for a Fano variety, between the semisimplicity condition of its quantum cohomology and the existence of full exceptional collections in its derived category of coherent sheaves. Additionally, in its quantitative form, the conjecture specifies an explicit relation between the monodromy data of the quantum cohomology, characteristic classes, and exceptional collections. A refined version of the conjecture is introduced, with a particular focus on the central connection matrix, and a precise link is established between this refined conjecture and Γ-conjecture II, as proposed by S. Galkin, V. Golyshev, and H. Iritani. By performing explicit calculations of the monodromy data, the validity of the refined conjecture for all complex Grassmannians G(r,k) is demonstrated. Intended for students and researchers, the book serves as an introduction to quantum cohomology and its isomonodromic approach, along with its algebraic counterpart in the derived category of coherent sheaves.