Mastering Automated Machine Learning Concepts Tools And Techniques

DOWNLOAD
Download Mastering Automated Machine Learning Concepts Tools And Techniques PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Mastering Automated Machine Learning Concepts Tools And Techniques book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Mastering Automated Machine Learning Concepts Tools And Techniques
DOWNLOAD
Author : Peter Jones
language : en
Publisher: Walzone Press
Release Date : 2025-01-17
Mastering Automated Machine Learning Concepts Tools And Techniques written by Peter Jones and has been published by Walzone Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-01-17 with Computers categories.
"Mastering Automated Machine Learning: Concepts, Tools, and Techniques" is an essential guide for anyone seeking to unlock the full potential of Automated Machine Learning (AutoML), a groundbreaking technology transforming the field of data science. By automating complex and time-consuming processes, AutoML is making machine learning more efficient and accessible to a broader range of professionals. This book offers an in-depth exploration of core principles, state-of-the-art methodologies, and the practical tools that define AutoML. From data preparation and feature engineering to model selection, tuning, and deployment, readers will acquire a thorough understanding of how AutoML streamlines the entire machine learning pipeline. Whether you're a data scientist, machine learning engineer, or software developer eager to harness the power of automation, "Mastering Automated Machine Learning" provides the insights you need to implement cutting-edge AutoML solutions. With practical examples and guidance on using Python-based frameworks, this book equips you to revolutionize your data science projects. Embrace the future of machine learning and optimize your workflows with "Mastering Automated Machine Learning: Concepts, Tools, and Techniques."
Automated Machine Learning
DOWNLOAD
Author : Frank Hutter
language : en
Publisher: Springer
Release Date : 2019-05-17
Automated Machine Learning written by Frank Hutter and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-05-17 with Computers categories.
This open access book presents the first comprehensive overview of general methods in Automated Machine Learning (AutoML), collects descriptions of existing systems based on these methods, and discusses the first series of international challenges of AutoML systems. The recent success of commercial ML applications and the rapid growth of the field has created a high demand for off-the-shelf ML methods that can be used easily and without expert knowledge. However, many of the recent machine learning successes crucially rely on human experts, who manually select appropriate ML architectures (deep learning architectures or more traditional ML workflows) and their hyperparameters. To overcome this problem, the field of AutoML targets a progressive automation of machine learning, based on principles from optimization and machine learning itself. This book serves as a point of entry into this quickly-developing field for researchers and advanced students alike, as well as providing a reference for practitioners aiming to use AutoML in their work.
Artificial Intelligence Mastering Automation With Ai In 2025
DOWNLOAD
Author : A. Adams
language : en
Publisher: Code Academy
Release Date : 2025-05-06
Artificial Intelligence Mastering Automation With Ai In 2025 written by A. Adams and has been published by Code Academy this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-05-06 with Computers categories.
Unlock the power of Artificial Intelligence with Artificial Intelligence: Mastering Automation with AI in 2025. This comprehensive guide takes you on a practical journey through AI fundamentals, automation techniques, real-world applications, and the latest trends shaping our future. Whether you're a beginner or a tech enthusiast, this book will help you understand how AI is transforming industries, from smart assistants to intelligent systems. With easy-to-follow explanations, hands-on insights, and forward-looking strategies, you'll be equipped to thrive in the AI-driven world of 2025.
Mastering Machine Learning Algorithms
DOWNLOAD
Author : Giuseppe Bonaccorso
language : en
Publisher: Packt Publishing Ltd
Release Date : 2020-01-31
Mastering Machine Learning Algorithms written by Giuseppe Bonaccorso and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-01-31 with Computers categories.
Updated and revised second edition of the bestselling guide to exploring and mastering the most important algorithms for solving complex machine learning problems Key FeaturesUpdated to include new algorithms and techniquesCode updated to Python 3.8 & TensorFlow 2.x New coverage of regression analysis, time series analysis, deep learning models, and cutting-edge applicationsBook Description Mastering Machine Learning Algorithms, Second Edition helps you harness the real power of machine learning algorithms in order to implement smarter ways of meeting today's overwhelming data needs. This newly updated and revised guide will help you master algorithms used widely in semi-supervised learning, reinforcement learning, supervised learning, and unsupervised learning domains. You will use all the modern libraries from the Python ecosystem – including NumPy and Keras – to extract features from varied complexities of data. Ranging from Bayesian models to the Markov chain Monte Carlo algorithm to Hidden Markov models, this machine learning book teaches you how to extract features from your dataset, perform complex dimensionality reduction, and train supervised and semi-supervised models by making use of Python-based libraries such as scikit-learn. You will also discover practical applications for complex techniques such as maximum likelihood estimation, Hebbian learning, and ensemble learning, and how to use TensorFlow 2.x to train effective deep neural networks. By the end of this book, you will be ready to implement and solve end-to-end machine learning problems and use case scenarios. What you will learnUnderstand the characteristics of a machine learning algorithmImplement algorithms from supervised, semi-supervised, unsupervised, and RL domainsLearn how regression works in time-series analysis and risk predictionCreate, model, and train complex probabilistic models Cluster high-dimensional data and evaluate model accuracy Discover how artificial neural networks work – train, optimize, and validate them Work with autoencoders, Hebbian networks, and GANsWho this book is for This book is for data science professionals who want to delve into complex ML algorithms to understand how various machine learning models can be built. Knowledge of Python programming is required.
Automated Machine Learning
DOWNLOAD
Author : Adnan Masood
language : en
Publisher: Packt Publishing
Release Date : 2021-02-18
Automated Machine Learning written by Adnan Masood and has been published by Packt Publishing this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-02-18 with categories.
Get to grips with automated machine learning and adopt a hands-on approach to AutoML implementation and associated methodologies Key Features: Get up to speed with AutoML using OSS, Azure, AWS, GCP, or any platform of your choice Eliminate mundane tasks in data engineering and reduce human errors in machine learning models Find out how you can make machine learning accessible for all users to promote decentralized processes Book Description: Every machine learning engineer deals with systems that have hyperparameters, and the most basic task in automated machine learning (AutoML) is to automatically set these hyperparameters to optimize performance. The latest deep neural networks have a wide range of hyperparameters for their architecture, regularization, and optimization, which can be customized effectively to save time and effort. This book reviews the underlying techniques of automated feature engineering, model and hyperparameter tuning, gradient-based approaches, and much more. You'll discover different ways of implementing these techniques in open source tools and then learn to use enterprise tools for implementing AutoML in three major cloud service providers: Microsoft Azure, Amazon Web Services (AWS), and Google Cloud Platform. As you progress, you'll explore the features of cloud AutoML platforms by building machine learning models using AutoML. The book will also show you how to develop accurate models by automating time-consuming and repetitive tasks in the machine learning development lifecycle. By the end of this machine learning book, you'll be able to build and deploy AutoML models that are not only accurate, but also increase productivity, allow interoperability, and minimize feature engineering tasks. What You Will Learn: Explore AutoML fundamentals, underlying methods, and techniques Assess AutoML aspects such as algorithm selection, auto featurization, and hyperparameter tuning in an applied scenario Find out the difference between cloud and operations support systems (OSS) Implement AutoML in enterprise cloud to deploy ML models and pipelines Build explainable AutoML pipelines with transparency Understand automated feature engineering and time series forecasting Automate data science modeling tasks to implement ML solutions easily and focus on more complex problems Who this book is for: Citizen data scientists, machine learning developers, artificial intelligence enthusiasts, or anyone looking to automatically build machine learning models using the features offered by open source tools, Microsoft Azure Machine Learning, AWS, and Google Cloud Platform will find this book useful. Beginner-level knowledge of building ML models is required to get the best out of this book. Prior experience in using Enterprise cloud is beneficial.
Artificial Intelligence In Highway Safety
DOWNLOAD
Author : Subasish Das
language : en
Publisher: CRC Press
Release Date : 2022-09-29
Artificial Intelligence In Highway Safety written by Subasish Das and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-09-29 with Computers categories.
Artificial Intelligence in Highway Safety provides cutting-edge advances in highway safety using AI. The author is a highway safety expert. He pursues highway safety within its contexts, while drawing attention to the predictive powers of AI techniques in solving complex problems for safety improvement. This book provides both theoretical and practical aspects of highway safety. Each chapter contains theory and its contexts in plain language with several real-life examples. It is suitable for anyone interested in highway safety and AI and it provides an illuminating and accessible introduction to this fast-growing research trend. Material supplementing the book can be found at https://github.com/subasish/AI_in_HighwaySafety. It offers a variety of supplemental materials, including data sets and R codes.
Machine Learning Hero
DOWNLOAD
Author : Cuantum Technologies LLC
language : en
Publisher: Packt Publishing Ltd
Release Date : 2025-01-16
Machine Learning Hero written by Cuantum Technologies LLC and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-01-16 with Computers categories.
Learn machine learning through hands-on Python projects, covering core concepts, essential libraries, and real-world applications for aspiring data scientists. Key Features Comprehensive coverage of machine learning fundamentals and advanced topics Real-world projects to apply skills in practical scenarios Integration of Python libraries for data science and AI development Book DescriptionThis book takes you on a journey through the world of machine learning, beginning with foundational concepts such as supervised and unsupervised learning, and progressing to advanced topics like feature engineering, hyperparameter tuning, and dimensionality reduction. Each chapter blends theory with practical exercises to ensure a deep understanding of the material. The book emphasizes Python, introducing essential libraries like NumPy, Pandas, Matplotlib, and Scikit-learn, along with deep learning frameworks like TensorFlow and PyTorch. You’ll learn to preprocess data, visualize insights, and build models capable of tackling complex datasets. Hands-on coding examples and exercises reinforce concepts and help bridge the gap between knowledge and application. In the final chapters, you'll work on real-world projects like predictive analytics, clustering, and regression. These projects are designed to provide a practical context for the techniques learned and equip you with actionable skills for data science and AI roles. By the end, you'll be prepared to apply machine learning principles to solve real-world challenges with confidence.What you will learn Build machine learning models using Python libraries Apply feature engineering and preprocessing techniques Visualize datasets with Matplotlib and Seaborn Optimize machine learning models with hyperparameter tuning Implement clustering and dimensionality reduction methods Work on real-world projects for practical experience Who this book is for Aspiring data scientists, software developers, and tech enthusiasts seeking to master machine learning concepts and Python libraries. Basic Python knowledge is recommended but not required, as foundational topics are covered.
Mastering Machine Learning Algorithms
DOWNLOAD
Author : Giuseppe Bonaccorso
language : en
Publisher: Packt Publishing Ltd
Release Date : 2018-05-25
Mastering Machine Learning Algorithms written by Giuseppe Bonaccorso and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-05-25 with Computers categories.
Explore and master the most important algorithms for solving complex machine learning problems. Key Features Discover high-performing machine learning algorithms and understand how they work in depth. One-stop solution to mastering supervised, unsupervised, and semi-supervised machine learning algorithms and their implementation. Master concepts related to algorithm tuning, parameter optimization, and more Book Description Machine learning is a subset of AI that aims to make modern-day computer systems smarter and more intelligent. The real power of machine learning resides in its algorithms, which make even the most difficult things capable of being handled by machines. However, with the advancement in the technology and requirements of data, machines will have to be smarter than they are today to meet the overwhelming data needs; mastering these algorithms and using them optimally is the need of the hour. Mastering Machine Learning Algorithms is your complete guide to quickly getting to grips with popular machine learning algorithms. You will be introduced to the most widely used algorithms in supervised, unsupervised, and semi-supervised machine learning, and will learn how to use them in the best possible manner. Ranging from Bayesian models to the MCMC algorithm to Hidden Markov models, this book will teach you how to extract features from your dataset and perform dimensionality reduction by making use of Python-based libraries such as scikit-learn. You will also learn how to use Keras and TensorFlow to train effective neural networks. If you are looking for a single resource to study, implement, and solve end-to-end machine learning problems and use-cases, this is the book you need. What you will learn Explore how a ML model can be trained, optimized, and evaluated Understand how to create and learn static and dynamic probabilistic models Successfully cluster high-dimensional data and evaluate model accuracy Discover how artificial neural networks work and how to train, optimize, and validate them Work with Autoencoders and Generative Adversarial Networks Apply label spreading and propagation to large datasets Explore the most important Reinforcement Learning techniques Who this book is for This book is an ideal and relevant source of content for data science professionals who want to delve into complex machine learning algorithms, calibrate models, and improve the predictions of the trained model. A basic knowledge of machine learning is preferred to get the best out of this guide.
Essentials Of Data Analysis
DOWNLOAD
Author : Agasti Khatri
language : en
Publisher: Educohack Press
Release Date : 2025-02-20
Essentials Of Data Analysis written by Agasti Khatri and has been published by Educohack Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-02-20 with Computers categories.
"Essentials of Data Analysis" is an indispensable guide that navigates readers through the world of data-driven decision-making. This book presents essential concepts, techniques, and tools in an accessible and user-friendly manner. It serves as a trusted companion for both beginners and professionals in their data analysis journey. We start by laying a solid foundation in data analysis principles, providing a comprehensive understanding of key concepts and methodologies. The book delves into practical techniques for data manipulation, visualization, and exploration, equipping readers with the skills to extract actionable insights from raw data. Real-world examples, case studies, and hands-on exercises bring abstract concepts to life. We emphasize the ethical and responsible use of data, guiding readers through ethical considerations, privacy concerns, and regulatory requirements. This fosters a culture of ethical awareness and accountability. Additionally, we explore emerging trends and technologies shaping the future of data analysis, such as artificial intelligence, machine learning, augmented analytics, and edge computing. By adopting innovative techniques, readers can drive meaningful change within their organizations. "Essentials of Data Analysis" is a valuable resource for enhancing analytical skills, advancing careers, and understanding the role of data in decision-making.
Mastering Azure Machine Learning
DOWNLOAD
Author : Christoph Korner
language : en
Publisher: Packt Publishing Ltd
Release Date : 2022-05-10
Mastering Azure Machine Learning written by Christoph Korner and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-05-10 with Computers categories.
Supercharge and automate your deployments to Azure Machine Learning clusters and Azure Kubernetes Service using Azure Machine Learning services Key Features Implement end-to-end machine learning pipelines on Azure Train deep learning models using Azure compute infrastructure Deploy machine learning models using MLOps Book Description Azure Machine Learning is a cloud service for accelerating and managing the machine learning (ML) project life cycle that ML professionals, data scientists, and engineers can use in their day-to-day workflows. This book covers the end-to-end ML process using Microsoft Azure Machine Learning, including data preparation, performing and logging ML training runs, designing training and deployment pipelines, and managing these pipelines via MLOps. The first section shows you how to set up an Azure Machine Learning workspace; ingest and version datasets; as well as preprocess, label, and enrich these datasets for training. In the next two sections, you'll discover how to enrich and train ML models for embedding, classification, and regression. You'll explore advanced NLP techniques, traditional ML models such as boosted trees, modern deep neural networks, recommendation systems, reinforcement learning, and complex distributed ML training techniques - all using Azure Machine Learning. The last section will teach you how to deploy the trained models as a batch pipeline or real-time scoring service using Docker, Azure Machine Learning clusters, Azure Kubernetes Services, and alternative deployment targets. By the end of this book, you'll be able to combine all the steps you've learned by building an MLOps pipeline. What you will learn Understand the end-to-end ML pipeline Get to grips with the Azure Machine Learning workspace Ingest, analyze, and preprocess datasets for ML using the Azure cloud Train traditional and modern ML techniques efficiently using Azure ML Deploy ML models for batch and real-time scoring Understand model interoperability with ONNX Deploy ML models to FPGAs and Azure IoT Edge Build an automated MLOps pipeline using Azure DevOps Who this book is for This book is for machine learning engineers, data scientists, and machine learning developers who want to use the Microsoft Azure cloud to manage their datasets and machine learning experiments and build an enterprise-grade ML architecture using MLOps. This book will also help anyone interested in machine learning to explore important steps of the ML process and use Azure Machine Learning to support them, along with building powerful ML cloud applications. A basic understanding of Python and knowledge of machine learning are recommended.