Mastering Deep Learning From Basics To Advanced Techniques

DOWNLOAD
Download Mastering Deep Learning From Basics To Advanced Techniques PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Mastering Deep Learning From Basics To Advanced Techniques book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Mastering Deep Learning From Basics To Advanced Techniques
DOWNLOAD
Author : Dr.M.Kasthuri
language : en
Publisher: SK Research Group of Companies
Release Date : 2024-07-10
Mastering Deep Learning From Basics To Advanced Techniques written by Dr.M.Kasthuri and has been published by SK Research Group of Companies this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-07-10 with Fiction categories.
Dr.M.Kasthuri, Associate Professor, Department of Computer Science, Bishop Heber College, Tiruchirappalli, Tamil Nadu, India. Mrs.K.Kalaiselvi, Guest Lecturer, Department of Computer Science, Thanthai Periyar Government Arts and Science College, Tiruchirappalli, Tamil Nadu, India.
Deep Learning For Coders With Fastai And Pytorch
DOWNLOAD
Author : Jeremy Howard
language : en
Publisher: O'Reilly Media
Release Date : 2020-06-29
Deep Learning For Coders With Fastai And Pytorch written by Jeremy Howard and has been published by O'Reilly Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-06-29 with Computers categories.
Deep learning is often viewed as the exclusive domain of math PhDs and big tech companies. But as this hands-on guide demonstrates, programmers comfortable with Python can achieve impressive results in deep learning with little math background, small amounts of data, and minimal code. How? With fastai, the first library to provide a consistent interface to the most frequently used deep learning applications. Authors Jeremy Howard and Sylvain Gugger, the creators of fastai, show you how to train a model on a wide range of tasks using fastai and PyTorch. You’ll also dive progressively further into deep learning theory to gain a complete understanding of the algorithms behind the scenes. Train models in computer vision, natural language processing, tabular data, and collaborative filtering Learn the latest deep learning techniques that matter most in practice Improve accuracy, speed, and reliability by understanding how deep learning models work Discover how to turn your models into web applications Implement deep learning algorithms from scratch Consider the ethical implications of your work Gain insight from the foreword by PyTorch cofounder, Soumith Chintala
Mastering Pytorch
DOWNLOAD
Author : Ashish Ranjan Jha
language : en
Publisher: Packt Publishing Ltd
Release Date : 2021-02-12
Mastering Pytorch written by Ashish Ranjan Jha and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-02-12 with Computers categories.
Master advanced techniques and algorithms for deep learning with PyTorch using real-world examples Key Features Understand how to use PyTorch 1.x to build advanced neural network models Learn to perform a wide range of tasks by implementing deep learning algorithms and techniques Gain expertise in domains such as computer vision, NLP, Deep RL, Explainable AI, and much more Book DescriptionDeep learning is driving the AI revolution, and PyTorch is making it easier than ever before for anyone to build deep learning applications. This PyTorch book will help you uncover expert techniques to get the most out of your data and build complex neural network models. The book starts with a quick overview of PyTorch and explores using convolutional neural network (CNN) architectures for image classification. You'll then work with recurrent neural network (RNN) architectures and transformers for sentiment analysis. As you advance, you'll apply deep learning across different domains, such as music, text, and image generation using generative models and explore the world of generative adversarial networks (GANs). You'll not only build and train your own deep reinforcement learning models in PyTorch but also deploy PyTorch models to production using expert tips and techniques. Finally, you'll get to grips with training large models efficiently in a distributed manner, searching neural architectures effectively with AutoML, and rapidly prototyping models using PyTorch and fast.ai. By the end of this PyTorch book, you'll be able to perform complex deep learning tasks using PyTorch to build smart artificial intelligence models.What you will learn Implement text and music generating models using PyTorch Build a deep Q-network (DQN) model in PyTorch Export universal PyTorch models using Open Neural Network Exchange (ONNX) Become well-versed with rapid prototyping using PyTorch with fast.ai Perform neural architecture search effectively using AutoML Easily interpret machine learning (ML) models written in PyTorch using Captum Design ResNets, LSTMs, Transformers, and more using PyTorch Find out how to use PyTorch for distributed training using the torch.distributed API Who this book is for This book is for data scientists, machine learning researchers, and deep learning practitioners looking to implement advanced deep learning paradigms using PyTorch 1.x. Working knowledge of deep learning with Python programming is required.
Deep Learning With Python
DOWNLOAD
Author : Jason Brownlee
language : en
Publisher: Machine Learning Mastery
Release Date : 2016-05-13
Deep Learning With Python written by Jason Brownlee and has been published by Machine Learning Mastery this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-05-13 with Computers categories.
Deep learning is the most interesting and powerful machine learning technique right now. Top deep learning libraries are available on the Python ecosystem like Theano and TensorFlow. Tap into their power in a few lines of code using Keras, the best-of-breed applied deep learning library. In this Ebook, learn exactly how to get started and apply deep learning to your own machine learning projects.
Mastering Computer Vision With Tensorflow 2 X
DOWNLOAD
Author : Krishnendu Kar
language : en
Publisher:
Release Date : 2020-05-14
Mastering Computer Vision With Tensorflow 2 X written by Krishnendu Kar and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-05-14 with Computers categories.
You will learn the principles of computer vision and deep learning, and understand various models and architectures with their pros and cons. You will learn how to use TensorFlow 2.x to build your own neural network model and apply it to various computer vision tasks such as image acquiring, processing, and analyzing.
Advanced Machine Learning With Python
DOWNLOAD
Author : John Hearty
language : en
Publisher: Packt Publishing Ltd
Release Date : 2016-07-28
Advanced Machine Learning With Python written by John Hearty and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-07-28 with Computers categories.
Solve challenging data science problems by mastering cutting-edge machine learning techniques in Python About This Book Resolve complex machine learning problems and explore deep learning Learn to use Python code for implementing a range of machine learning algorithms and techniques A practical tutorial that tackles real-world computing problems through a rigorous and effective approach Who This Book Is For This title is for Python developers and analysts or data scientists who are looking to add to their existing skills by accessing some of the most powerful recent trends in data science. If you've ever considered building your own image or text-tagging solution, or of entering a Kaggle contest for instance, this book is for you! Prior experience of Python and grounding in some of the core concepts of machine learning would be helpful. What You Will Learn Compete with top data scientists by gaining a practical and theoretical understanding of cutting-edge deep learning algorithms Apply your new found skills to solve real problems, through clearly-explained code for every technique and test Automate large sets of complex data and overcome time-consuming practical challenges Improve the accuracy of models and your existing input data using powerful feature engineering techniques Use multiple learning techniques together to improve the consistency of results Understand the hidden structure of datasets using a range of unsupervised techniques Gain insight into how the experts solve challenging data problems with an effective, iterative, and validation-focused approach Improve the effectiveness of your deep learning models further by using powerful ensembling techniques to strap multiple models together In Detail Designed to take you on a guided tour of the most relevant and powerful machine learning techniques in use today by top data scientists, this book is just what you need to push your Python algorithms to maximum potential. Clear examples and detailed code samples demonstrate deep learning techniques, semi-supervised learning, and more - all whilst working with real-world applications that include image, music, text, and financial data. The machine learning techniques covered in this book are at the forefront of commercial practice. They are applicable now for the first time in contexts such as image recognition, NLP and web search, computational creativity, and commercial/financial data modeling. Deep Learning algorithms and ensembles of models are in use by data scientists at top tech and digital companies, but the skills needed to apply them successfully, while in high demand, are still scarce. This book is designed to take the reader on a guided tour of the most relevant and powerful machine learning techniques. Clear descriptions of how techniques work and detailed code examples demonstrate deep learning techniques, semi-supervised learning and more, in real world applications. We will also learn about NumPy and Theano. By this end of this book, you will learn a set of advanced Machine Learning techniques and acquire a broad set of powerful skills in the area of feature selection & feature engineering. Style and approach This book focuses on clarifying the theory and code behind complex algorithms to make them practical, useable, and well-understood. Each topic is described with real-world applications, providing both broad contextual coverage and detailed guidance.
Master Machine Learning Algorithms
DOWNLOAD
Author : Jason Brownlee
language : en
Publisher: Machine Learning Mastery
Release Date : 2016-03-04
Master Machine Learning Algorithms written by Jason Brownlee and has been published by Machine Learning Mastery this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-03-04 with Computers categories.
You must understand the algorithms to get good (and be recognized as being good) at machine learning. In this Ebook, finally cut through the math and learn exactly how machine learning algorithms work, then implement them from scratch, step-by-step.
Mastering Machine Learning Algorithms
DOWNLOAD
Author : Giuseppe Bonaccorso
language : en
Publisher: Packt Publishing Ltd
Release Date : 2018-05-25
Mastering Machine Learning Algorithms written by Giuseppe Bonaccorso and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-05-25 with Computers categories.
Explore and master the most important algorithms for solving complex machine learning problems. Key Features Discover high-performing machine learning algorithms and understand how they work in depth. One-stop solution to mastering supervised, unsupervised, and semi-supervised machine learning algorithms and their implementation. Master concepts related to algorithm tuning, parameter optimization, and more Book Description Machine learning is a subset of AI that aims to make modern-day computer systems smarter and more intelligent. The real power of machine learning resides in its algorithms, which make even the most difficult things capable of being handled by machines. However, with the advancement in the technology and requirements of data, machines will have to be smarter than they are today to meet the overwhelming data needs; mastering these algorithms and using them optimally is the need of the hour. Mastering Machine Learning Algorithms is your complete guide to quickly getting to grips with popular machine learning algorithms. You will be introduced to the most widely used algorithms in supervised, unsupervised, and semi-supervised machine learning, and will learn how to use them in the best possible manner. Ranging from Bayesian models to the MCMC algorithm to Hidden Markov models, this book will teach you how to extract features from your dataset and perform dimensionality reduction by making use of Python-based libraries such as scikit-learn. You will also learn how to use Keras and TensorFlow to train effective neural networks. If you are looking for a single resource to study, implement, and solve end-to-end machine learning problems and use-cases, this is the book you need. What you will learn Explore how a ML model can be trained, optimized, and evaluated Understand how to create and learn static and dynamic probabilistic models Successfully cluster high-dimensional data and evaluate model accuracy Discover how artificial neural networks work and how to train, optimize, and validate them Work with Autoencoders and Generative Adversarial Networks Apply label spreading and propagation to large datasets Explore the most important Reinforcement Learning techniques Who this book is for This book is an ideal and relevant source of content for data science professionals who want to delve into complex machine learning algorithms, calibrate models, and improve the predictions of the trained model. A basic knowledge of machine learning is preferred to get the best out of this guide.
Mastering Deep Learning With Keras
DOWNLOAD
Author : Prasanjeet Sikder
language : en
Publisher: Prasanjeet Sikder
Release Date :
Mastering Deep Learning With Keras written by Prasanjeet Sikder and has been published by Prasanjeet Sikder this book supported file pdf, txt, epub, kindle and other format this book has been release on with Computers categories.
**Title: Mastering Deep Learning with Keras: From Fundamentals to Advanced Techniques** **Chapter 1: Introduction to Deep Learning and Keras** - Understanding the basics of deep learning - Introducing the Keras framework - Setting up your development environment **Chapter 2: Building Blocks of Neural Networks** - Exploring layers and activations - Creating various types of layers using Keras - Initializing weights and biases **Chapter 3: Building Your First Neural Network with Keras** - Creating a simple feedforward neural network - Compiling the model with loss functions and optimizers - Training the model and monitoring progress **Chapter 4: Convolutional Neural Networks (CNNs)** - Understanding CNN architecture - Implementing image recognition using Keras - Transfer learning with pre-trained CNN models **Chapter 5: Recurrent Neural Networks (RNNs)** - Introduction to sequential data processing - Building and training RNNs using Keras - Applications of RNNs in natural language processing and time series analysis **Chapter 6: Advanced Keras Functionalities** - Callbacks for model customization and monitoring - Handling overfitting with regularization techniques - Custom layers and loss functions **Chapter 7: Deep Learning for Natural Language Processing** - Text preprocessing and tokenization - Building text classification and sentiment analysis models - Sequence-to-sequence models for machine translation **Chapter 8: Deep Learning for Computer Vision** - Object detection and localization using Keras - Generating images with Generative Adversarial Networks (GANs) - Image segmentation with U-Net architecture **Chapter 9: Deployment and Productionization** - Exporting Keras models for production - Integration with web frameworks and APIs - Converting models to optimized formats (TensorFlow Lite, ONNX) **Chapter 10: Cutting-Edge Deep Learning Techniques** - Introduction to attention mechanisms - Exploring Transformers and BERT models - Reinforcement learning with Keras **Chapter 11: Case Studies and Real-World Projects** - Deep learning applications in various industries - Walkthroughs of projects using Keras for specific tasks - Best practices and lessons learned from real projects **Chapter 12: The Future of Keras and Deep Learning** - Emerging trends in deep learning - Keras updates and upcoming features - Ethical considerations and responsible AI in deep learning **Appendix: Keras Cheat Sheet** - Quick reference guide to Keras syntax, functions, and methods **Appendix: Keras Interview Questions with Answers**
Mastering Data Science A Comprehensive Guide To Techniques And Applications
DOWNLOAD
Author : Adam Jones
language : en
Publisher: Walzone Press
Release Date : 2025-01-05
Mastering Data Science A Comprehensive Guide To Techniques And Applications written by Adam Jones and has been published by Walzone Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-01-05 with Computers categories.
Embark on your data science journey with "Mastering Data Science: A Comprehensive Guide to Techniques and Applications," the ultimate resource for mastering the vast landscape of data science. Whether you're a novice eager to explore the field or an expert looking to refine and expand your skills, this book provides a thorough exploration of essential data science techniques and applications. Discover the foundational principles of data wrangling, preprocessing, statistical fundamentals, and essential mathematical techniques. Delve into the complexities of machine learning, deep learning, and natural language processing with clear explanations that connect theory to real-world practice. Each chapter is carefully designed to unravel complex concepts and features practical examples to enhance your understanding. Explore the intricacies of time series analysis, develop proficiency in crafting compelling data visualizations, and learn to effectively deploy machine learning models. With a focus on practical application, this guide not only imparts theoretical insights but also empowers you to address data science challenges confidently. Unlock the potential of data science to innovate, solve critical problems, and make informed decisions in today's data-centric world with "Mastering Data Science: A Comprehensive Guide to Techniques and Applications."