Mastering Deep Learning With Tensorflow From Fundamentals To Real World Deployment

DOWNLOAD
Download Mastering Deep Learning With Tensorflow From Fundamentals To Real World Deployment PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Mastering Deep Learning With Tensorflow From Fundamentals To Real World Deployment book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Mastering Deep Learning With Tensorflow From Fundamentals To Real World Deployment
DOWNLOAD
Author : Peter Jones
language : en
Publisher: Walzone Press
Release Date : 2025-01-17
Mastering Deep Learning With Tensorflow From Fundamentals To Real World Deployment written by Peter Jones and has been published by Walzone Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-01-17 with Computers categories.
Explore the realm of artificial intelligence with "Mastering Deep Learning with TensorFlow: From Fundamentals to Real-World Deployment." This all-encompassing guide provides an in-depth understanding of AI, machine learning, and deep learning, powered by TensorFlow—Google's leading AI framework. Whether you're a beginner starting your AI journey or a professional looking to elevate your expertise in AI model deployment, this book is tailored to meet your needs. Covering crucial topics like neural network design, convolutional and recurrent neural networks, natural language processing, and computer vision, it offers a robust introduction to TensorFlow and its AI applications. Through hands-on examples and a focus on practical solutions, you'll learn how to apply TensorFlow to solve real-world challenges. From theoretical foundations to deployment techniques, "Mastering Deep Learning with TensorFlow" takes you through every step, preparing you to build, fine-tune, and deploy advanced AI models. By the end, you’ll be ready to harness TensorFlow’s full potential, making strides in the rapidly evolving field of artificial intelligence. This book is an indispensable resource for anyone eager to engage with or advance in AI.
Deep Learning For Coders With Fastai And Pytorch
DOWNLOAD
Author : Jeremy Howard
language : en
Publisher: O'Reilly Media
Release Date : 2020-06-29
Deep Learning For Coders With Fastai And Pytorch written by Jeremy Howard and has been published by O'Reilly Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-06-29 with Computers categories.
Deep learning is often viewed as the exclusive domain of math PhDs and big tech companies. But as this hands-on guide demonstrates, programmers comfortable with Python can achieve impressive results in deep learning with little math background, small amounts of data, and minimal code. How? With fastai, the first library to provide a consistent interface to the most frequently used deep learning applications. Authors Jeremy Howard and Sylvain Gugger, the creators of fastai, show you how to train a model on a wide range of tasks using fastai and PyTorch. You’ll also dive progressively further into deep learning theory to gain a complete understanding of the algorithms behind the scenes. Train models in computer vision, natural language processing, tabular data, and collaborative filtering Learn the latest deep learning techniques that matter most in practice Improve accuracy, speed, and reliability by understanding how deep learning models work Discover how to turn your models into web applications Implement deep learning algorithms from scratch Consider the ethical implications of your work Gain insight from the foreword by PyTorch cofounder, Soumith Chintala
Machine Learning With Tensorflow Second Edition
DOWNLOAD
Author : Mattmann A. Chris
language : en
Publisher: Manning
Release Date : 2021-02-02
Machine Learning With Tensorflow Second Edition written by Mattmann A. Chris and has been published by Manning this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-02-02 with Computers categories.
Updated with new code, new projects, and new chapters, Machine Learning with TensorFlow, Second Edition gives readers a solid foundation in machine-learning concepts and the TensorFlow library. Summary Updated with new code, new projects, and new chapters, Machine Learning with TensorFlow, Second Edition gives readers a solid foundation in machine-learning concepts and the TensorFlow library. Written by NASA JPL Deputy CTO and Principal Data Scientist Chris Mattmann, all examples are accompanied by downloadable Jupyter Notebooks for a hands-on experience coding TensorFlow with Python. New and revised content expands coverage of core machine learning algorithms, and advancements in neural networks such as VGG-Face facial identification classifiers and deep speech classifiers. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Supercharge your data analysis with machine learning! ML algorithms automatically improve as they process data, so results get better over time. You don’t have to be a mathematician to use ML: Tools like Google’s TensorFlow library help with complex calculations so you can focus on getting the answers you need. About the book Machine Learning with TensorFlow, Second Edition is a fully revised guide to building machine learning models using Python and TensorFlow. You’ll apply core ML concepts to real-world challenges, such as sentiment analysis, text classification, and image recognition. Hands-on examples illustrate neural network techniques for deep speech processing, facial identification, and auto-encoding with CIFAR-10. What's inside Machine Learning with TensorFlow Choosing the best ML approaches Visualizing algorithms with TensorBoard Sharing results with collaborators Running models in Docker About the reader Requires intermediate Python skills and knowledge of general algebraic concepts like vectors and matrices. Examples use the super-stable 1.15.x branch of TensorFlow and TensorFlow 2.x. About the author Chris Mattmann is the Division Manager of the Artificial Intelligence, Analytics, and Innovation Organization at NASA Jet Propulsion Lab. The first edition of this book was written by Nishant Shukla with Kenneth Fricklas. Table of Contents PART 1 - YOUR MACHINE-LEARNING RIG 1 A machine-learning odyssey 2 TensorFlow essentials PART 2 - CORE LEARNING ALGORITHMS 3 Linear regression and beyond 4 Using regression for call-center volume prediction 5 A gentle introduction to classification 6 Sentiment classification: Large movie-review dataset 7 Automatically clustering data 8 Inferring user activity from Android accelerometer data 9 Hidden Markov models 10 Part-of-speech tagging and word-sense disambiguation PART 3 - THE NEURAL NETWORK PARADIGM 11 A peek into autoencoders 12 Applying autoencoders: The CIFAR-10 image dataset 13 Reinforcement learning 14 Convolutional neural networks 15 Building a real-world CNN: VGG-Face ad VGG-Face Lite 16 Recurrent neural networks 17 LSTMs and automatic speech recognition 18 Sequence-to-sequence models for chatbots 19 Utility landscape
The Tensorflow Workshop
DOWNLOAD
Author : Matthew Moocarme
language : en
Publisher: Packt Publishing Ltd
Release Date : 2021-12-15
The Tensorflow Workshop written by Matthew Moocarme and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-12-15 with Computers categories.
Get started with TensorFlow fundamentals to build and train deep learning models with real-world data, practical exercises, and challenging activities Key FeaturesUnderstand the fundamentals of tensors, neural networks, and deep learningDiscover how to implement and fine-tune deep learning models for real-world datasetsBuild your experience and confidence with hands-on exercises and activitiesBook Description Getting to grips with tensors, deep learning, and neural networks can be intimidating and confusing for anyone, no matter their experience level. The breadth of information out there, often written at a very high level and aimed at advanced practitioners, can make getting started even more challenging. If this sounds familiar to you, The TensorFlow Workshop is here to help. Combining clear explanations, realistic examples, and plenty of hands-on practice, it'll quickly get you up and running. You'll start off with the basics – learning how to load data into TensorFlow, perform tensor operations, and utilize common optimizers and activation functions. As you progress, you'll experiment with different TensorFlow development tools, including TensorBoard, TensorFlow Hub, and Google Colab, before moving on to solve regression and classification problems with sequential models. Building on this solid foundation, you'll learn how to tune models and work with different types of neural network, getting hands-on with real-world deep learning applications such as text encoding, temperature forecasting, image augmentation, and audio processing. By the end of this deep learning book, you'll have the skills, knowledge, and confidence to tackle your own ambitious deep learning projects with TensorFlow. What you will learnGet to grips with TensorFlow's mathematical operationsPre-process a wide variety of tabular, sequential, and image dataUnderstand the purpose and usage of different deep learning layersPerform hyperparameter-tuning to prevent overfitting of training dataUse pre-trained models to speed up the development of learning modelsGenerate new data based on existing patterns using generative modelsWho this book is for This TensorFlow book is for anyone who wants to develop their understanding of deep learning and get started building neural networks with TensorFlow. Basic knowledge of Python programming and its libraries, as well as a general understanding of the fundamentals of data science and machine learning, will help you grasp the topics covered in this book more easily.
Python Data Science Essentials
DOWNLOAD
Author : MARK JOHN LADO
language : en
Publisher: Amazon Digital Services LLC - Kdp
Release Date : 2024-03-18
Python Data Science Essentials written by MARK JOHN LADO and has been published by Amazon Digital Services LLC - Kdp this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-03-18 with Computers categories.
The field of data science has emerged as a critical component in extracting actionable insights and making informed decisions from vast amounts of data. This comprehensive guide explores the fundamentals of data science using the Python language, a versatile toolset widely adopted in the industry. The journey begins with an introduction to data science, outlining its principles, methodologies, and real-world applications. Next, the basics of Python programming are covered, providing a solid foundation for data manipulation and analysis. Data types and structures in Python are then explored, followed by an in-depth look at essential libraries such as NumPy and Pandas, which facilitate efficient data handling and manipulation. The importance of data visualization is emphasized through tutorials on Matplotlib and Seaborn, enabling effective communication of insights and trends. Data cleaning and preprocessing techniques are discussed, addressing common challenges in data quality and preparation. Statistical analysis is introduced as a fundamental aspect of data science, showcasing its applications in hypothesis testing, correlation analysis, and regression modeling using Python. Machine learning concepts are then explored, covering both supervised and unsupervised learning algorithms, including linear regression, decision trees, clustering, and dimensionality reduction. Model evaluation and validation techniques are essential for assessing model performance and generalization ability, ensuring robust and reliable predictions. Additionally, an introduction to deep learning with Python provides insights into advanced neural network architectures and their applications in solving complex problems. Handling big data is a critical aspect of modern data science, and this guide provides an overview of using Python and Spark for scalable and distributed data processing. Real-world case studies across various domains illustrate the practical applications of data science techniques, from e-commerce recommendation systems to healthcare analytics. Finally, best practices and tips for data science projects are discussed, highlighting key considerations for project success, including data exploration, feature engineering, model selection, and collaboration. By mastering these fundamentals, aspiring data scientists can embark on their journey with confidence, equipped to tackle real-world challenges and drive impactful insights from data.
Tensorflow 2 Reinforcement Learning Cookbook
DOWNLOAD
Author : Praveen Palanisamy
language : en
Publisher: Packt Publishing Ltd
Release Date : 2021-01-15
Tensorflow 2 Reinforcement Learning Cookbook written by Praveen Palanisamy and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-01-15 with Computers categories.
Discover recipes for developing AI applications to solve a variety of real-world business problems using reinforcement learning Key FeaturesDevelop and deploy deep reinforcement learning-based solutions to production pipelines, products, and servicesExplore popular reinforcement learning algorithms such as Q-learning, SARSA, and the actor-critic methodCustomize and build RL-based applications for performing real-world tasksBook Description With deep reinforcement learning, you can build intelligent agents, products, and services that can go beyond computer vision or perception to perform actions. TensorFlow 2.x is the latest major release of the most popular deep learning framework used to develop and train deep neural networks (DNNs). This book contains easy-to-follow recipes for leveraging TensorFlow 2.x to develop artificial intelligence applications. Starting with an introduction to the fundamentals of deep reinforcement learning and TensorFlow 2.x, the book covers OpenAI Gym, model-based RL, model-free RL, and how to develop basic agents. You'll discover how to implement advanced deep reinforcement learning algorithms such as actor-critic, deep deterministic policy gradients, deep-Q networks, proximal policy optimization, and deep recurrent Q-networks for training your RL agents. As you advance, you’ll explore the applications of reinforcement learning by building cryptocurrency trading agents, stock/share trading agents, and intelligent agents for automating task completion. Finally, you'll find out how to deploy deep reinforcement learning agents to the cloud and build cross-platform apps using TensorFlow 2.x. By the end of this TensorFlow book, you'll have gained a solid understanding of deep reinforcement learning algorithms and their implementations from scratch. What you will learnBuild deep reinforcement learning agents from scratch using the all-new TensorFlow 2.x and Keras APIImplement state-of-the-art deep reinforcement learning algorithms using minimal codeBuild, train, and package deep RL agents for cryptocurrency and stock tradingDeploy RL agents to the cloud and edge to test them by creating desktop, web, and mobile apps and cloud servicesSpeed up agent development using distributed DNN model trainingExplore distributed deep RL architectures and discover opportunities in AIaaS (AI as a Service)Who this book is for The book is for machine learning application developers, AI and applied AI researchers, data scientists, deep learning practitioners, and students with a basic understanding of reinforcement learning concepts who want to build, train, and deploy their own reinforcement learning systems from scratch using TensorFlow 2.x.
Tensorflow For Machine Intelligence
DOWNLOAD
Author :
language : en
Publisher:
Release Date : 2016-05-15
Tensorflow For Machine Intelligence written by and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-05-15 with Computers categories.
This book will discuss Google's deep learning library.
Hands On Machine Learning With Scikit Learn Keras And Tensorflow
DOWNLOAD
Author : Aurélien Géron
language : en
Publisher: O'Reilly Media
Release Date : 2019-09-05
Hands On Machine Learning With Scikit Learn Keras And Tensorflow written by Aurélien Géron and has been published by O'Reilly Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-09-05 with Computers categories.
Through a series of recent breakthroughs, deep learning has boosted the entire field of machine learning. Now, even programmers who know close to nothing about this technology can use simple, efficient tools to implement programs capable of learning from data. This practical book shows you how. By using concrete examples, minimal theory, and two production-ready Python frameworks—Scikit-Learn and TensorFlow—author Aurélien Géron helps you gain an intuitive understanding of the concepts and tools for building intelligent systems. You’ll learn a range of techniques, starting with simple linear regression and progressing to deep neural networks. With exercises in each chapter to help you apply what you’ve learned, all you need is programming experience to get started. Explore the machine learning landscape, particularly neural nets Use Scikit-Learn to track an example machine-learning project end-to-end Explore several training models, including support vector machines, decision trees, random forests, and ensemble methods Use the TensorFlow library to build and train neural nets Dive into neural net architectures, including convolutional nets, recurrent nets, and deep reinforcement learning Learn techniques for training and scaling deep neural nets
Mastering Python 3 Programming
DOWNLOAD
Author : Subburaj Ramasamy
language : en
Publisher: BPB Publications
Release Date : 2024-05-14
Mastering Python 3 Programming written by Subburaj Ramasamy and has been published by BPB Publications this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-05-14 with Computers categories.
Learn the nitty-gritty of Python 3 programming language by coding and executing programs seamlessly in a lucid manner KEY FEATURES ● Python 3 fundamentals, from data manipulation to control flow. ● Key concepts like data structures, algorithms, and Python applications, catering to a diverse audience. ● Beginner-friendly guide with step-by-step explanations and practical examples. DESCRIPTION Python 3's clear and concise syntax and extensive collection of built-in libraries and frameworks make it a powerful and versatile programming language. This comprehensive guide, "Mastering Python 3 Programming", is designed to take you from the ground up to proficiency, equipping you to create effective Python programs. This book provides an extensive overview of Python programming, covering a diverse range of topics essential for understanding Python 3. Each chapter explores key concepts like Unicode strings, functions and recursions, lists, tuples, sets, and dictionaries, along with advanced topics such as object-oriented programming, file handling, exception handling, and more. With detailed explanations and real-life examples, you will be able to build a strong understanding of Python 3. Throughout the book, you will find useful concepts and Python libraries explained clearly, along with case studies, executable programs, exercises, and easy-to-follow style. This book focuses on real-world Python applications, developing critical thinking and problem-solving skills. It prepares students for Python challenges, equipping them to contribute meaningfully in their fields. With a deep understanding of Python, students gain confidence to explore new opportunities and drive innovation. WHAT YOU WILL LEARN ● Set up IDLE for Python programming and execute programs. ● Adapt algorithm based problem-solving techniques. ● Utilize Python libraries for data visualization. ● Grasp data structures and common algorithms. ● Master decorators, file handling, exception handling, inheritance, polymorphism, and recursion in Python. WHO THIS BOOK IS FOR The target audience for this book includes undergraduate students from diverse academic backgrounds, including life sciences, mathematics, commerce, management, arts, and individuals who are new to computer science. TABLE OF CONTENTS 1. Introduction to Python 3 2. Algorithmic Problem Solving 3. Numeric Computations and Console Input 4. Unicode, Strings and Console Output 5. Selection and Loops 6. Functions and Recursion 7. Lists 8. Tuples, Sets, and Dictionaries 9. Introduction to Object-Oriented Programming 10. Inheritance and Polymorphism 11. File Handling 12. Exception Handling 13. Gems of Python 14. Data Structures and Algorithms using Python 15. Data Visualization 16. Python Applications and Libraries Appendix 1: Python Projects Appendix 2: List of Built-in Functions in Python Appendix 3: Answers to Review Questions
Neural Network Programming
DOWNLOAD
Author : Rob Botwright
language : en
Publisher: Rob Botwright
Release Date : 2024
Neural Network Programming written by Rob Botwright and has been published by Rob Botwright this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024 with Computers categories.
Unlock the Power of AI with Our Neural Network Programming Book Bundle Are you ready to embark on a journey into the exciting world of artificial intelligence? Do you dream of mastering the skills needed to create cutting-edge AI systems that can revolutionize industries and change the future? Look no further than our comprehensive book bundle, "Neural Network Programming: How to Create Modern AI Systems with Python, TensorFlow, and Keras." Why Choose Our Book Bundle? In this era of technological advancement, artificial intelligence is at the forefront of innovation. Neural networks, a subset of AI, are driving breakthroughs in fields as diverse as healthcare, finance, and autonomous vehicles. To harness the full potential of AI, you need knowledge and expertise. That's where our book bundle comes in. What You'll Gain · Book 1 - Neural Network Programming for Beginners: If you're new to AI, this book is your perfect starting point. Learn Python, TensorFlow, and Keras from scratch and build your first AI systems. Lay the foundation for a rewarding journey into AI development. · Book 2 - Advanced Neural Network Programming: Ready to take your skills to the next level? Dive deep into advanced techniques, fine-tune models, and explore real-world applications. Master the intricacies of TensorFlow and Keras to tackle complex AI challenges. · Book 3 - Neural Network Programming: Beyond the Basics: Discover the world beyond fundamentals. Explore advanced concepts and cutting-edge architectures like Convolutional Neural Networks (CNNs) and Generative Adversarial Networks (GANs). Be prepared to innovate in AI research and development. · Book 4 - Expert Neural Network Programming: Elevate yourself to expert status. Dive into quantum neural networks, ethical AI, model deployment, and the future of AI research. Push the boundaries of AI development with advanced Python, TensorFlow, and Keras techniques. Who Is This Bundle For? · Aspiring AI Enthusiasts: If you're new to AI but eager to learn, our bundle offers a gentle and structured introduction. · Seasoned Developers: Professionals seeking to master AI development will find advanced techniques and real-world applications. · Researchers: Dive into cutting-edge AI research and contribute to the forefront of innovation. Why Us? Our book bundle is meticulously crafted by experts with a passion for AI. We offer a clear, step-by-step approach, ensuring that learners of all backgrounds can benefit. With hands-on projects, real-world applications, and a focus on both theory and practice, our bundle equips you with the skills and knowledge needed to succeed in the ever-evolving world of AI. Don't miss this opportunity to unlock the power of AI. Invest in your future today with "Neural Network Programming: How to Create Modern AI Systems with Python, TensorFlow, and Keras." Start your journey into the exciting world of artificial intelligence now!