[PDF] Mastering Hadoop 3 - eBooks Review

Mastering Hadoop 3


Mastering Hadoop 3
DOWNLOAD

Download Mastering Hadoop 3 PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Mastering Hadoop 3 book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Mastering Hadoop 3


Mastering Hadoop 3
DOWNLOAD
Author : Chanchal Singh
language : en
Publisher: Packt Publishing Ltd
Release Date : 2019-02-28

Mastering Hadoop 3 written by Chanchal Singh and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-02-28 with Computers categories.


A comprehensive guide to mastering the most advanced Hadoop 3 concepts Key FeaturesGet to grips with the newly introduced features and capabilities of Hadoop 3Crunch and process data using MapReduce, YARN, and a host of tools within the Hadoop ecosystemSharpen your Hadoop skills with real-world case studies and codeBook Description Apache Hadoop is one of the most popular big data solutions for distributed storage and for processing large chunks of data. With Hadoop 3, Apache promises to provide a high-performance, more fault-tolerant, and highly efficient big data processing platform, with a focus on improved scalability and increased efficiency. With this guide, you’ll understand advanced concepts of the Hadoop ecosystem tool. You’ll learn how Hadoop works internally, study advanced concepts of different ecosystem tools, discover solutions to real-world use cases, and understand how to secure your cluster. It will then walk you through HDFS, YARN, MapReduce, and Hadoop 3 concepts. You’ll be able to address common challenges like using Kafka efficiently, designing low latency, reliable message delivery Kafka systems, and handling high data volumes. As you advance, you’ll discover how to address major challenges when building an enterprise-grade messaging system, and how to use different stream processing systems along with Kafka to fulfil your enterprise goals. By the end of this book, you’ll have a complete understanding of how components in the Hadoop ecosystem are effectively integrated to implement a fast and reliable data pipeline, and you’ll be equipped to tackle a range of real-world problems in data pipelines. What you will learnGain an in-depth understanding of distributed computing using Hadoop 3Develop enterprise-grade applications using Apache Spark, Flink, and moreBuild scalable and high-performance Hadoop data pipelines with security, monitoring, and data governanceExplore batch data processing patterns and how to model data in HadoopMaster best practices for enterprises using, or planning to use, Hadoop 3 as a data platformUnderstand security aspects of Hadoop, including authorization and authenticationWho this book is for If you want to become a big data professional by mastering the advanced concepts of Hadoop, this book is for you. You’ll also find this book useful if you’re a Hadoop professional looking to strengthen your knowledge of the Hadoop ecosystem. Fundamental knowledge of the Java programming language and basics of Hadoop is necessary to get started with this book.



Mastering Spark With R


Mastering Spark With R
DOWNLOAD
Author : Javier Luraschi
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2019-10-07

Mastering Spark With R written by Javier Luraschi and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-10-07 with Computers categories.


If you’re like most R users, you have deep knowledge and love for statistics. But as your organization continues to collect huge amounts of data, adding tools such as Apache Spark makes a lot of sense. With this practical book, data scientists and professionals working with large-scale data applications will learn how to use Spark from R to tackle big data and big compute problems. Authors Javier Luraschi, Kevin Kuo, and Edgar Ruiz show you how to use R with Spark to solve different data analysis problems. This book covers relevant data science topics, cluster computing, and issues that should interest even the most advanced users. Analyze, explore, transform, and visualize data in Apache Spark with R Create statistical models to extract information and predict outcomes; automate the process in production-ready workflows Perform analysis and modeling across many machines using distributed computing techniques Use large-scale data from multiple sources and different formats with ease from within Spark Learn about alternative modeling frameworks for graph processing, geospatial analysis, and genomics at scale Dive into advanced topics including custom transformations, real-time data processing, and creating custom Spark extensions



Big Data Analytics With Hadoop 3


Big Data Analytics With Hadoop 3
DOWNLOAD
Author : Sridhar Alla
language : en
Publisher:
Release Date : 2018-05-29

Big Data Analytics With Hadoop 3 written by Sridhar Alla and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-05-29 with Computers categories.


Explore big data concepts, platforms, analytics, and their applications using the power of Hadoop 3 Key Features Learn Hadoop 3 to build effective big data analytics solutions on-premise and on cloud Integrate Hadoop with other big data tools such as R, Python, Apache Spark, and Apache Flink Exploit big data using Hadoop 3 with real-world examples Book Description Apache Hadoop is the most popular platform for big data processing, and can be combined with a host of other big data tools to build powerful analytics solutions. Big Data Analytics with Hadoop 3 shows you how to do just that, by providing insights into the software as well as its benefits with the help of practical examples. Once you have taken a tour of Hadoop 3's latest features, you will get an overview of HDFS, MapReduce, and YARN, and how they enable faster, more efficient big data processing. You will then move on to learning how to integrate Hadoop with the open source tools, such as Python and R, to analyze and visualize data and perform statistical computing on big data. As you get acquainted with all this, you will explore how to use Hadoop 3 with Apache Spark and Apache Flink for real-time data analytics and stream processing. In addition to this, you will understand how to use Hadoop to build analytics solutions on the cloud and an end-to-end pipeline to perform big data analysis using practical use cases. By the end of this book, you will be well-versed with the analytical capabilities of the Hadoop ecosystem. You will be able to build powerful solutions to perform big data analytics and get insight effortlessly. What you will learn Explore the new features of Hadoop 3 along with HDFS, YARN, and MapReduce Get well-versed with the analytical capabilities of Hadoop ecosystem using practical examples Integrate Hadoop with R and Python for more efficient big data processing Learn to use Hadoop with Apache Spark and Apache Flink for real-time data analytics Set up a Hadoop cluster on AWS cloud Perform big data analytics on AWS using Elastic Map Reduce Who this book is for Big Data Analytics with Hadoop 3 is for you if you are looking to build high-performance analytics solutions for your enterprise or business using Hadoop 3's powerful features, or you're new to big data analytics. A basic understanding of the Java programming language is required.



Mastering Apache Spark


Mastering Apache Spark
DOWNLOAD
Author : Mike Frampton
language : en
Publisher:
Release Date : 2015

Mastering Apache Spark written by Mike Frampton and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015 with Data mining categories.


Gain expertise in processing and storing data by using advanced techniques with Apache SparkAbout This Book- Explore the integration of Apache Spark with third party applications such as H20, Databricks and Titan- Evaluate how Cassandra and Hbase can be used for storage- An advanced guide with a combination of instructions and practical examples to extend the most up-to date Spark functionalitiesWho This Book Is ForIf you are a developer with some experience with Spark and want to strengthen your knowledge of how to get around in the world of Spark, then this book is ideal for you. Basic knowledge of Linux, Hadoop and Spark is assumed. Reasonable knowledge of Scala is expected.What You Will Learn- Extend the tools available for processing and storage- Examine clustering and classification using MLlib- Discover Spark stream processing via Flume, HDFS- Create a schema in Spark SQL, and learn how a Spark schema can be populated with data- Study Spark based graph processing using Spark GraphX- Combine Spark with H20 and deep learning and learn why it is useful- Evaluate how graph storage works with Apache Spark, Titan, HBase and Cassandra- Use Apache Spark in the cloud with Databricks and AWSIn DetailApache Spark is an in-memory cluster based parallel processing system that provides a wide range of functionality like graph processing, machine learning, stream processing and SQL. It operates at unprecedented speeds, is easy to use and offers a rich set of data transformations.This book aims to take your limited knowledge of Spark to the next level by teaching you how to expand Spark functionality. The book commences with an overview of the Spark eco-system. You will learn how to use MLlib to create a fully working neural net for handwriting recognition. You will then discover how stream processing can be tuned for optimal performance and to ensure parallel processing. The book extends to show how to incorporate H20 for machine learning, Titan for graph based storage, Databricks for cloud-based Spark. Intermediate Scala based code examples are provided for Apache Spark module processing in a CentOS Linux and Databricks cloud environment.Style and approachThis book is an extensive guide to Apache Spark modules and tools and shows how Spark's functionality can be extended for real-time processing and storage with worked examples.



Hadoop The Definitive Guide


Hadoop The Definitive Guide
DOWNLOAD
Author : Tom White
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2012-05-10

Hadoop The Definitive Guide written by Tom White and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-05-10 with Computers categories.


Ready to unlock the power of your data? With this comprehensive guide, you’ll learn how to build and maintain reliable, scalable, distributed systems with Apache Hadoop. This book is ideal for programmers looking to analyze datasets of any size, and for administrators who want to set up and run Hadoop clusters. You’ll find illuminating case studies that demonstrate how Hadoop is used to solve specific problems. This third edition covers recent changes to Hadoop, including material on the new MapReduce API, as well as MapReduce 2 and its more flexible execution model (YARN). Store large datasets with the Hadoop Distributed File System (HDFS) Run distributed computations with MapReduce Use Hadoop’s data and I/O building blocks for compression, data integrity, serialization (including Avro), and persistence Discover common pitfalls and advanced features for writing real-world MapReduce programs Design, build, and administer a dedicated Hadoop cluster—or run Hadoop in the cloud Load data from relational databases into HDFS, using Sqoop Perform large-scale data processing with the Pig query language Analyze datasets with Hive, Hadoop’s data warehousing system Take advantage of HBase for structured and semi-structured data, and ZooKeeper for building distributed systems



Mastering Large Datasets With Python


Mastering Large Datasets With Python
DOWNLOAD
Author : John Wolohan
language : en
Publisher: Simon and Schuster
Release Date : 2020-01-15

Mastering Large Datasets With Python written by John Wolohan and has been published by Simon and Schuster this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-01-15 with Computers categories.


Summary Modern data science solutions need to be clean, easy to read, and scalable. In Mastering Large Datasets with Python, author J.T. Wolohan teaches you how to take a small project and scale it up using a functionally influenced approach to Python coding. You’ll explore methods and built-in Python tools that lend themselves to clarity and scalability, like the high-performing parallelism method, as well as distributed technologies that allow for high data throughput. The abundant hands-on exercises in this practical tutorial will lock in these essential skills for any large-scale data science project. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Programming techniques that work well on laptop-sized data can slow to a crawl—or fail altogether—when applied to massive files or distributed datasets. By mastering the powerful map and reduce paradigm, along with the Python-based tools that support it, you can write data-centric applications that scale efficiently without requiring codebase rewrites as your requirements change. About the book Mastering Large Datasets with Python teaches you to write code that can handle datasets of any size. You’ll start with laptop-sized datasets that teach you to parallelize data analysis by breaking large tasks into smaller ones that can run simultaneously. You’ll then scale those same programs to industrial-sized datasets on a cluster of cloud servers. With the map and reduce paradigm firmly in place, you’ll explore tools like Hadoop and PySpark to efficiently process massive distributed datasets, speed up decision-making with machine learning, and simplify your data storage with AWS S3. What's inside An introduction to the map and reduce paradigm Parallelization with the multiprocessing module and pathos framework Hadoop and Spark for distributed computing Running AWS jobs to process large datasets About the reader For Python programmers who need to work faster with more data. About the author J. T. Wolohan is a lead data scientist at Booz Allen Hamilton, and a PhD researcher at Indiana University, Bloomington. Table of Contents: PART 1 1 ¦ Introduction 2 ¦ Accelerating large dataset work: Map and parallel computing 3 ¦ Function pipelines for mapping complex transformations 4 ¦ Processing large datasets with lazy workflows 5 ¦ Accumulation operations with reduce 6 ¦ Speeding up map and reduce with advanced parallelization PART 2 7 ¦ Processing truly big datasets with Hadoop and Spark 8 ¦ Best practices for large data with Apache Streaming and mrjob 9 ¦ PageRank with map and reduce in PySpark 10 ¦ Faster decision-making with machine learning and PySpark PART 3 11 ¦ Large datasets in the cloud with Amazon Web Services and S3 12 ¦ MapReduce in the cloud with Amazon’s Elastic MapReduce



Mastering Apache Storm


Mastering Apache Storm
DOWNLOAD
Author : Ankit Jain
language : en
Publisher: Packt Publishing Ltd
Release Date : 2017-08-16

Mastering Apache Storm written by Ankit Jain and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-08-16 with Computers categories.


Master the intricacies of Apache Storm and develop real-time stream processing applications with ease About This Book Exploit the various real-time processing functionalities offered by Apache Storm such as parallelism, data partitioning, and more Integrate Storm with other Big Data technologies like Hadoop, HBase, and Apache Kafka An easy-to-understand guide to effortlessly create distributed applications with Storm Who This Book Is For If you are a Java developer who wants to enter into the world of real-time stream processing applications using Apache Storm, then this book is for you. No previous experience in Storm is required as this book starts from the basics. After finishing this book, you will be able to develop not-so-complex Storm applications. What You Will Learn Understand the core concepts of Apache Storm and real-time processing Follow the steps to deploy multiple nodes of Storm Cluster Create Trident topologies to support various message-processing semantics Make your cluster sharing effective using Storm scheduling Integrate Apache Storm with other Big Data technologies such as Hadoop, HBase, Kafka, and more Monitor the health of your Storm cluster In Detail Apache Storm is a real-time Big Data processing framework that processes large amounts of data reliably, guaranteeing that every message will be processed. Storm allows you to scale your data as it grows, making it an excellent platform to solve your big data problems. This extensive guide will help you understand right from the basics to the advanced topics of Storm. The book begins with a detailed introduction to real-time processing and where Storm fits in to solve these problems. You'll get an understanding of deploying Storm on clusters by writing a basic Storm Hello World example. Next we'll introduce you to Trident and you'll get a clear understanding of how you can develop and deploy a trident topology. We cover topics such as monitoring, Storm Parallelism, scheduler and log processing, in a very easy to understand manner. You will also learn how to integrate Storm with other well-known Big Data technologies such as HBase, Redis, Kafka, and Hadoop to realize the full potential of Storm. With real-world examples and clear explanations, this book will ensure you will have a thorough mastery of Apache Storm. You will be able to use this knowledge to develop efficient, distributed real-time applications to cater to your business needs. Style and approach This easy-to-follow guide is full of examples and real-world applications to help you get an in-depth understanding of Apache Storm. This book covers the basics thoroughly and also delves into the intermediate and slightly advanced concepts of application development with Apache Storm.



Mastering Mongodb 3 X


Mastering Mongodb 3 X
DOWNLOAD
Author : Alex Giamas
language : en
Publisher: Packt Publishing Ltd
Release Date : 2017-11-17

Mastering Mongodb 3 X written by Alex Giamas and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-11-17 with Computers categories.


An expert's guide to build fault tolerant MongoDB application About This Book Master the advanced modeling, querying, and administration techniques in MongoDB and become a MongoDB expert Covers the latest updates and Big Data features frequently used by professional MongoDB developers and administrators If your goal is to become a certified MongoDB professional, this book is your perfect companion Who This Book Is For Mastering MongoDB is a book for database developers, architects, and administrators who want to learn how to use MongoDB more effectively and productively. If you have experience in, and are interested in working with, NoSQL databases to build apps and websites, then this book is for you. What You Will Learn Get hands-on with advanced querying techniques such as indexing, expressions, arrays, and more. Configure, monitor, and maintain highly scalable MongoDB environment like an expert. Master replication and data sharding to optimize read/write performance. Design secure and robust applications based on MongoDB. Administer MongoDB-based applications on-premise or in the cloud Scale MongoDB to achieve your design goals Integrate MongoDB with big data sources to process huge amounts of data In Detail MongoDB has grown to become the de facto NoSQL database with millions of users—from small startups to Fortune 500 companies. Addressing the limitations of SQL schema-based databases, MongoDB pioneered a shift of focus for DevOps and offered sharding and replication maintainable by DevOps teams. The book is based on MongoDB 3.x and covers topics ranging from database querying using the shell, built in drivers, and popular ODM mappers to more advanced topics such as sharding, high availability, and integration with big data sources. You will get an overview of MongoDB and how to play to its strengths, with relevant use cases. After that, you will learn how to query MongoDB effectively and make use of indexes as much as possible. The next part deals with the administration of MongoDB installations on-premise or in the cloud. We deal with database internals in the next section, explaining storage systems and how they can affect performance. The last section of this book deals with replication and MongoDB scaling, along with integration with heterogeneous data sources. By the end this book, you will be equipped with all the required industry skills and knowledge to become a certified MongoDB developer and administrator. Style and approach This book takes a practical, step-by-step approach to explain the concepts of MongoDB. Practical use-cases involving real-world examples are used throughout the book to clearly explain theoretical concepts.



Big Data And Hadoop


Big Data And Hadoop
DOWNLOAD
Author : Mayank Bhusan
language : en
Publisher: BPB Publications
Release Date : 2018-06-02

Big Data And Hadoop written by Mayank Bhusan and has been published by BPB Publications this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-06-02 with Computers categories.


The book contains the latest trend in IT industry 'BigData and Hadoop'. It explains how big is 'Big Data' and why everybody is trying to implement this into their IT project.It includes research work on various topics, theoretical and practical approach, each component of the architecture is described along with current industry trends.Big Data and Hadoop have taken together are a new skill as per the industry standards. Readers will get a compact book along with the industry experience and would be a reference to help readers.KEY FEATURES Overview Of Big Data, Basics of Hadoop, Hadoop Distributed File System, HBase, MapReduce, HIVE: The Dataware House Of Hadoop, PIG: The Higher Level Programming Environment, SQOOP: Importing Data From Heterogeneous Sources, Flume, Ozzie, Zookeeper & Big Data Stream Mining, Chapter-wise Questions & Previous Years Questions



Practical Hadoop Ecosystem


Practical Hadoop Ecosystem
DOWNLOAD
Author : Deepak Vohra
language : en
Publisher: Apress
Release Date : 2016-09-30

Practical Hadoop Ecosystem written by Deepak Vohra and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-09-30 with Computers categories.


Learn how to use the Apache Hadoop projects, including MapReduce, HDFS, Apache Hive, Apache HBase, Apache Kafka, Apache Mahout, and Apache Solr. From setting up the environment to running sample applications each chapter in this book is a practical tutorial on using an Apache Hadoop ecosystem project. While several books on Apache Hadoop are available, most are based on the main projects, MapReduce and HDFS, and none discusses the other Apache Hadoop ecosystem projects and how they all work together as a cohesive big data development platform. What You Will Learn: Set up the environment in Linux for Hadoop projects using Cloudera Hadoop Distribution CDH 5 Run a MapReduce job Store data with Apache Hive, and Apache HBase Index data in HDFS with Apache Solr Develop a Kafka messaging system Stream Logs to HDFS with Apache Flume Transfer data from MySQL database to Hive, HDFS, and HBase with Sqoop Create a Hive table over Apache Solr Develop a Mahout User Recommender System Who This Book Is For: Apache Hadoop developers. Pre-requisite knowledge of Linux and some knowledge of Hadoop is required.