Mastering Machine Learning With Python In Six Steps

DOWNLOAD
Download Mastering Machine Learning With Python In Six Steps PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Mastering Machine Learning With Python In Six Steps book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Mastering Machine Learning With Python In Six Steps
DOWNLOAD
Author : Manohar Swamynathan
language : en
Publisher: Apress
Release Date : 2019-10-01
Mastering Machine Learning With Python In Six Steps written by Manohar Swamynathan and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-10-01 with Computers categories.
Explore fundamental to advanced Python 3 topics in six steps, all designed to make you a worthy practitioner. This updated version’s approach is based on the “six degrees of separation” theory, which states that everyone and everything is a maximum of six steps away and presents each topic in two parts: theoretical concepts and practical implementation using suitable Python 3 packages. You’ll start with the fundamentals of Python 3 programming language, machine learning history, evolution, and the system development frameworks. Key data mining/analysis concepts, such as exploratory analysis, feature dimension reduction, regressions, time series forecasting and their efficient implementation in Scikit-learn are covered as well. You’ll also learn commonly used model diagnostic and tuning techniques. These include optimal probability cutoff point for class creation, variance, bias, bagging, boosting, ensemble voting, grid search, random search, Bayesian optimization, and the noise reduction technique for IoT data. Finally, you’ll review advanced text mining techniques, recommender systems, neural networks, deep learning, reinforcement learning techniques and their implementation. All the code presented in the book will be available in the form of iPython notebooks to enable you to try out these examples and extend them to your advantage. What You'll Learn Understand machine learning development and frameworks Assess model diagnosis and tuning in machine learning Examine text mining, natuarl language processing (NLP), and recommender systems Review reinforcement learning and CNN Who This Book Is For Python developers, data engineers, and machine learning engineers looking to expand their knowledge or career into machine learning area.
Handbook Of Hydroinformatics
DOWNLOAD
Author : Saeid Eslamian
language : en
Publisher: Elsevier
Release Date : 2022-11-30
Handbook Of Hydroinformatics written by Saeid Eslamian and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-11-30 with Technology & Engineering categories.
Classic Soft-Computing Techniques is the first volume of the three, in the Handbook of HydroInformatics series. Through this comprehensive, 34-chapters work, the contributors explore the difference between traditional computing, also known as hard computing, and soft computing, which is based on the importance given to issues like precision, certainty and rigor. The chapters go on to define fundamentally classic soft-computing techniques such as Artificial Neural Network, Fuzzy Logic, Genetic Algorithm, Supporting Vector Machine, Ant-Colony Based Simulation, Bat Algorithm, Decision Tree Algorithm, Firefly Algorithm, Fish Habitat Analysis, Game Theory, Hybrid Cuckoo–Harmony Search Algorithm, Honey-Bee Mating Optimization, Imperialist Competitive Algorithm, Relevance Vector Machine, etc. It is a fully comprehensive handbook providing all the information needed around classic soft-computing techniques. This volume is a true interdisciplinary work, and the audience includes postgraduates and early career researchers interested in Computer Science, Mathematical Science, Applied Science, Earth and Geoscience, Geography, Civil Engineering, Engineering, Water Science, Atmospheric Science, Social Science, Environment Science, Natural Resources, and Chemical Engineering. - Key insights from global contributors in the fields of data management research, climate change and resilience, insufficient data problem, etc. - Offers applied examples and case studies in each chapter, providing the reader with real world scenarios for comparison. - Introduces classic soft-computing techniques, necessary for a range of disciplines.
Machine Learning Applications Using Python
DOWNLOAD
Author : Puneet Mathur
language : en
Publisher: Apress
Release Date : 2018-12-12
Machine Learning Applications Using Python written by Puneet Mathur and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-12-12 with Computers categories.
Gain practical skills in machine learning for finance, healthcare, and retail. This book uses a hands-on approach by providing case studies from each of these domains: you’ll see examples that demonstrate how to use machine learning as a tool for business enhancement. As a domain expert, you will not only discover how machine learning is used in finance, healthcare, and retail, but also work through practical case studies where machine learning has been implemented. Machine Learning Applications Using Python is divided into three sections, one for each of the domains (healthcare, finance, and retail). Each section starts with an overview of machine learning and key technological advancements in that domain. You’ll then learn more by using case studies on how organizations are changing the game in their chosen markets. This book has practical case studies with Python code and domain-specific innovative ideas for monetizing machine learning. What You Will Learn Discover applied machine learning processes and principles Implement machine learning in areas of healthcare, finance, and retail Avoid the pitfalls of implementing applied machine learning Build Python machine learning examples in the three subject areas Who This Book Is For Data scientists and machine learning professionals.
Fundamentals Of Data Science
DOWNLOAD
Author : Sanjeev J. Wagh
language : en
Publisher: CRC Press
Release Date : 2021-09-26
Fundamentals Of Data Science written by Sanjeev J. Wagh and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-09-26 with Business & Economics categories.
Fundamentals of Data Science is designed for students, academicians and practitioners with a complete walkthrough right from the foundational groundwork required to outlining all the concepts, techniques and tools required to understand Data Science. Data Science is an umbrella term for the non-traditional techniques and technologies that are required to collect, aggregate, process, and gain insights from massive datasets. This book offers all the processes, methodologies, various steps like data acquisition, pre-process, mining, prediction, and visualization tools for extracting insights from vast amounts of data by the use of various scientific methods, algorithms, and processes Readers will learn the steps necessary to create the application with SQl, NoSQL, Python, R, Matlab, Octave and Tablue. This book provides a stepwise approach to building solutions to data science applications right from understanding the fundamentals, performing data analytics to writing source code. All the concepts are discussed in simple English to help the community to become Data Scientist without much pre-requisite knowledge. Features : Simple strategies for developing statistical models that analyze data and detect patterns, trends, and relationships in data sets. Complete roadmap to Data Science approach with dedicatedsections which includes Fundamentals, Methodology and Tools. Focussed approach for learning and practice various Data Science Toolswith Sample code and examples for practice. Information is presented in an accessible way for students, researchers and academicians and professionals.
Pro Machine Learning Algorithms
DOWNLOAD
Author : V Kishore Ayyadevara
language : en
Publisher: Apress
Release Date : 2018-06-30
Pro Machine Learning Algorithms written by V Kishore Ayyadevara and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-06-30 with Computers categories.
Bridge the gap between a high-level understanding of how an algorithm works and knowing the nuts and bolts to tune your models better. This book will give you the confidence and skills when developing all the major machine learning models. In Pro Machine Learning Algorithms, you will first develop the algorithm in Excel so that you get a practical understanding of all the levers that can be tuned in a model, before implementing the models in Python/R. You will cover all the major algorithms: supervised and unsupervised learning, which include linear/logistic regression; k-means clustering; PCA; recommender system; decision tree; random forest; GBM; and neural networks. You will also be exposed to the latest in deep learning through CNNs, RNNs, and word2vec for text mining. You will be learning not only the algorithms, but also the concepts of feature engineering to maximize the performance of a model. You will see the theory along with case studies, such as sentiment classification, fraud detection, recommender systems, and image recognition, so that you get the best of both theory and practice for the vast majority of the machine learning algorithms used in industry. Along with learning the algorithms, you will also be exposed to running machine-learning models on all the major cloud service providers. You are expected to have minimal knowledge of statistics/software programming and by the end of this book you should be able to work on a machine learning project with confidence. What You Will Learn Get an in-depth understanding of all the major machine learning and deep learning algorithms Fully appreciate the pitfalls to avoid while building models Implement machine learning algorithms in the cloud Follow a hands-on approach through case studies for each algorithm Gain the tricks of ensemble learning to build more accurate models Discover the basics of programming in R/Python and the Keras framework for deep learning Who This Book Is For Business analysts/ IT professionals who want to transition into data science roles. Data scientists who want to solidify their knowledge in machine learning.
Python Programming For Data Scientists
DOWNLOAD
Author : Editor IJSMI
language : en
Publisher: International Journal of Statistics and Medical Informatics
Release Date : 2019-11-15
Python Programming For Data Scientists written by Editor IJSMI and has been published by International Journal of Statistics and Medical Informatics this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-11-15 with Computers categories.
Python programming language is an open source programming language which can be used under different operating system. Python programming redefined the programming concepts with its important features like flexibility, adaptability and reusability of codes. Python programming language has numerous libraries or modules which helps the programmer to save their time. The book starts with the overview of basic Python topics such as data structures, data types, conditions and controls, functions, lists, file handling and handling external datasets and database connections. The book also covers the topics in data science such as graphical and chart visualization, statistical modeling, text mining and machine learning algorithms. The book uses popular libraries of Python like matplotlib, sciket-learn and numpy, to perform graphical and machine learning related tasks. Users are encouraged to refer to the author’s book on “Machine Learning: An overview with the help of R software package” (ISBN- 978-1790122622) if they are familiar with R software package which is also an open source package The book requires users to download the Python version 3.0 and any of the Integrated Development Environments (IDE) such as Liclipse, Wing,PyCharm and Eric. Editor International Journal of Statistics and Medical Informatics www.ijsmi.com/book.php https://www.amazon.com/dp/1708620281(Paper Back) https://www.amazon.com/DP/B081K1SD4K (e-Book)
Artificial Intelligence And Industry 5 0
DOWNLOAD
Author :
language : en
Publisher: PHI Learning Pvt. Ltd.
Release Date : 2025-03-01
Artificial Intelligence And Industry 5 0 written by and has been published by PHI Learning Pvt. Ltd. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-03-01 with Computers categories.
Artificial Intelligence and Industry 5.0 is a textbook that bridges theoretical foundations of AI with its applications in the emerging areas of Industry 5.0. The book is written to provide a foundation for machine learning and deep learning with their applications in natural sciences by providing worked-out examples and exercises. The book takes a balanced approach between the theoretical basis for machine learning and its applications. It covers topics including artificial neural networks, machine learning, supervised and unsupervised learning, deep learning, convolution neural networks, and recurrent neural networks. Besides, the book also includes topics such as pattern recognition, natural language processing and metaheuristic algorithms which will give readers to understand some of the vital areas where AI plays a significant role. The well-explained algorithms and pseudocodes for each topic help students to apply them in their relevant field. The book, besides discussing the topics prescribed in the syllabus, is enriched with the research experience of the authors from different fields, including Theoretical or Computational Chemistry, Bioinformatics, and Computer Sciences, and various training programs conducted for the students/research community. This book is a result of 6 years of group discussions that took place with the groups of eminent professors and researchers in the field. For brief lectures/PPTs, the readers can visit PHI Learning Centre or https://github.com/gnsastry/ACDS-Lectures . KEY FEATURES • Includes topics prescribed in the syllabus as well as the latest research in the field. • The book provides a mathematical foundation and learning techniques in Artificial Intelligence, Machine Learning and Deep Learning. • Each chapter comprises a set of worked-out examples and exercises which are focused on the key concepts. • The book is organized with fundamental concepts and applications in natural sciences, healthcare, drug discovery, environmental sustainability, and more. TARGET AUDIENCE • B.Tech Computer Science and Engineering • B.Tech AI and ML • B.Tech all branches for elective course
Machine Learning For Small Bodies In The Solar System
DOWNLOAD
Author : Valerio Carruba
language : en
Publisher: Elsevier
Release Date : 2024-10-29
Machine Learning For Small Bodies In The Solar System written by Valerio Carruba and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-10-29 with Science categories.
Machine Learning for Small Bodies in the Solar System provides the latest developments and methods in applications of Machine Learning (ML) and Artificial Intelligence (AI) to different aspects of Solar System bodies, including dynamics, physical properties, and detection algorithms. Offering a practical approach, the book encompasses a wide range of topics, providing both readers with essential tools and insights for use in researching asteroids, comets, moons, and Trans-Neptunian objects. The inclusion of codes and links to publicly available repositories further facilitates hands-on learning, enabling readers to put their newfound knowledge into practice. Machine Learning for Small Bodies in the Solar System serves as an invaluable reference for researchers working in the broad fields of Solar System bodies; both seasoned researchers seeking to enhance their understanding of ML and AI in the context of Solar System exploration or those just stepping into the field looking for direction on methodologies and techniques to apply ML and AI in their work. - Provides a practical reference to applications of machine learning and artificial intelligence to small bodies in the Solar System - Approaches the topic from a multidisciplinary perspective, with chapters on dynamics, physical properties and software development - Includes code and links to publicly available repositories to allow readers practice the methodology covered
Pro Deep Learning With Tensorflow
DOWNLOAD
Author : Santanu Pattanayak
language : en
Publisher: Apress
Release Date : 2017-12-06
Pro Deep Learning With Tensorflow written by Santanu Pattanayak and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-12-06 with Computers categories.
Deploy deep learning solutions in production with ease using TensorFlow. You'll also develop the mathematical understanding and intuition required to invent new deep learning architectures and solutions on your own. Pro Deep Learning with TensorFlow provides practical, hands-on expertise so you can learn deep learning from scratch and deploy meaningful deep learning solutions. This book will allow you to get up to speed quickly using TensorFlow and to optimize different deep learning architectures. All of the practical aspects of deep learning that are relevant in any industry are emphasized in this book. You will be able to use the prototypes demonstrated to build new deep learning applications. The code presented in the book is available in the form of iPython notebooks and scripts which allow you to try out examples and extend them in interesting ways. You will be equipped with the mathematical foundation and scientific knowledge to pursue research in this field and give back to the community. What You'll Learn Understand full stack deep learning using TensorFlow and gain a solid mathematical foundation for deep learning Deploy complex deep learning solutions in production using TensorFlow Carry out research on deep learning and perform experiments using TensorFlow Who This Book Is For Data scientists and machine learning professionals, software developers, graduate students, and open source enthusiasts
Machine Learning Optimization And Data Science
DOWNLOAD
Author : Giuseppe Nicosia
language : en
Publisher: Springer Nature
Release Date : 2021-01-07
Machine Learning Optimization And Data Science written by Giuseppe Nicosia and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-01-07 with Computers categories.
This two-volume set, LNCS 12565 and 12566, constitutes the refereed proceedings of the 6th International Conference on Machine Learning, Optimization, and Data Science, LOD 2020, held in Siena, Italy, in July 2020. The total of 116 full papers presented in this two-volume post-conference proceedings set was carefully reviewed and selected from 209 submissions. These research articles were written by leading scientists in the fields of machine learning, artificial intelligence, reinforcement learning, computational optimization, and data science presenting a substantial array of ideas, technologies, algorithms, methods, and applications.