[PDF] Mastering Predictive Analytics With R Second Edition - eBooks Review

Mastering Predictive Analytics With R Second Edition


Mastering Predictive Analytics With R Second Edition
DOWNLOAD

Download Mastering Predictive Analytics With R Second Edition PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Mastering Predictive Analytics With R Second Edition book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Mastering Predictive Analytics With R


Mastering Predictive Analytics With R
DOWNLOAD
Author : Rui Miguel Forte
language : en
Publisher: Packt Publishing Ltd
Release Date : 2015-06-17

Mastering Predictive Analytics With R written by Rui Miguel Forte and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-06-17 with Computers categories.


R offers a free and open source environment that is perfect for both learning and deploying predictive modeling solutions in the real world. With its constantly growing community and plethora of packages, R offers the functionality to deal with a truly vast array of problems. This book is designed to be both a guide and a reference for moving beyond the basics of predictive modeling. The book begins with a dedicated chapter on the language of models and the predictive modeling process. Each subsequent chapter tackles a particular type of model, such as neural networks, and focuses on the three important questions of how the model works, how to use R to train it, and how to measure and assess its performance using real world data sets. By the end of this book, you will have explored and tested the most popular modeling techniques in use on real world data sets and mastered a diverse range of techniques in predictive analytics.



Mastering Predictive Analytics With R Second Edition


Mastering Predictive Analytics With R Second Edition
DOWNLOAD
Author : James D. Miller
language : en
Publisher:
Release Date : 2017-08-18

Mastering Predictive Analytics With R Second Edition written by James D. Miller and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-08-18 with Computers categories.


Master the craft of predictive modeling in R by developing strategy, intuition, and a solid foundation in essential conceptsAbout This Book* Grasping the major methods of predictive modeling and moving beyond black box thinking to a deeper level of understanding* Leveraging the flexibility and modularity of R to experiment with a range of different techniques and data types* Packed with practical advice and tips explaining important concepts and best practices to help you understand quickly and easilyWho This Book Is ForAlthough budding data scientists, predictive modelers, or quantitative analysts with only basic exposure to R and statistics will find this book to be useful, the experienced data scientist professional wishing to attain master level status , will also find this book extremely valuable.. This book assumes familiarity with the fundamentals of R, such as the main data types, simple functions, and how to move data around. Although no prior experience with machine learning or predictive modeling is required, there are some advanced topics provided that will require more than novice exposure.What You Will Learn* Master the steps involved in the predictive modeling process* Grow your expertise in using R and its diverse range of packages* Learn how to classify predictive models and distinguish which models are suitable for a particular problem* Understand steps for tidying data and improving the performing metrics* Recognize the assumptions, strengths, and weaknesses of a predictive model* Understand how and why each predictive model works in R* Select appropriate metrics to assess the performance of different types of predictive model* Explore word embedding and recurrent neural networks in R* Train models in R that can work on very large datasetsIn DetailR offers a free and open source environment that is perfect for both learning and deploying predictive modeling solutions. With its constantly growing community and plethora of packages, R offers the functionality to deal with a truly vast array of problems.The book begins with a dedicated chapter on the language of models and the predictive modeling process. You will understand the learning curve and the process of tidying data. Each subsequent chapter tackles a particular type of model, such as neural networks, and focuses on the three important questions of how the model works, how to use R to train it, and how to measure and assess its performance using real-world datasets. How do you train models that can handle really large datasets? This book will also show you just that. Finally, you will tackle the really important topic of deep learning by implementing applications on word embedding and recurrent neural networks.By the end of this book, you will have explored and tested the most popular modeling techniques in use on real- world datasets and mastered a diverse range of techniques in predictive analytics using R.Style and approachThis book takes a step-by-step approach in explaining the intermediate to advanced concepts in predictive analytics. Every concept is explained in depth, supplemented with practical examples applicable in a real-world setting.



Mastering Predictive Analytics With R


Mastering Predictive Analytics With R
DOWNLOAD
Author : James D. Miller
language : en
Publisher: Packt Publishing Ltd
Release Date : 2017-08-18

Mastering Predictive Analytics With R written by James D. Miller and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-08-18 with Computers categories.


Master the craft of predictive modeling in R by developing strategy, intuition, and a solid foundation in essential concepts About This Book Grasping the major methods of predictive modeling and moving beyond black box thinking to a deeper level of understanding Leveraging the flexibility and modularity of R to experiment with a range of different techniques and data types Packed with practical advice and tips explaining important concepts and best practices to help you understand quickly and easily Who This Book Is For Although budding data scientists, predictive modelers, or quantitative analysts with only basic exposure to R and statistics will find this book to be useful, the experienced data scientist professional wishing to attain master level status , will also find this book extremely valuable.. This book assumes familiarity with the fundamentals of R, such as the main data types, simple functions, and how to move data around. Although no prior experience with machine learning or predictive modeling is required, there are some advanced topics provided that will require more than novice exposure. What You Will Learn Master the steps involved in the predictive modeling process Grow your expertise in using R and its diverse range of packages Learn how to classify predictive models and distinguish which models are suitable for a particular problem Understand steps for tidying data and improving the performing metrics Recognize the assumptions, strengths, and weaknesses of a predictive model Understand how and why each predictive model works in R Select appropriate metrics to assess the performance of different types of predictive model Explore word embedding and recurrent neural networks in R Train models in R that can work on very large datasets In Detail R offers a free and open source environment that is perfect for both learning and deploying predictive modeling solutions. With its constantly growing community and plethora of packages, R offers the functionality to deal with a truly vast array of problems. The book begins with a dedicated chapter on the language of models and the predictive modeling process. You will understand the learning curve and the process of tidying data. Each subsequent chapter tackles a particular type of model, such as neural networks, and focuses on the three important questions of how the model works, how to use R to train it, and how to measure and assess its performance using real-world datasets. How do you train models that can handle really large datasets? This book will also show you just that. Finally, you will tackle the really important topic of deep learning by implementing applications on word embedding and recurrent neural networks. By the end of this book, you will have explored and tested the most popular modeling techniques in use on real- world datasets and mastered a diverse range of techniques in predictive analytics using R. Style and approach This book takes a step-by-step approach in explaining the intermediate to advanced concepts in predictive analytics. Every concept is explained in depth, supplemented with practical examples applicable in a real-world setting.



R For Data Science


R For Data Science
DOWNLOAD
Author : Hadley Wickham
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2016-12-12

R For Data Science written by Hadley Wickham and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-12-12 with Computers categories.


Learn how to use R to turn raw data into insight, knowledge, and understanding. This book introduces you to R, RStudio, and the tidyverse, a collection of R packages designed to work together to make data science fast, fluent, and fun. Suitable for readers with no previous programming experience, R for Data Science is designed to get you doing data science as quickly as possible. Authors Hadley Wickham and Garrett Grolemund guide you through the steps of importing, wrangling, exploring, and modeling your data and communicating the results. You'll get a complete, big-picture understanding of the data science cycle, along with basic tools you need to manage the details. Each section of the book is paired with exercises to help you practice what you've learned along the way. You'll learn how to: Wrangle—transform your datasets into a form convenient for analysis Program—learn powerful R tools for solving data problems with greater clarity and ease Explore—examine your data, generate hypotheses, and quickly test them Model—provide a low-dimensional summary that captures true "signals" in your dataset Communicate—learn R Markdown for integrating prose, code, and results



Mastering Data Analysis With R


Mastering Data Analysis With R
DOWNLOAD
Author : Gergely Daróczi
language : en
Publisher:
Release Date : 2015

Mastering Data Analysis With R written by Gergely Daróczi and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015 with Data mining categories.


Gain sharp insights into your data and solve real-world data science problems with R--from data munging to modeling and visualizationAbout This Book* Handle your data with precision and care for optimal business intelligence* Restructure and transform your data to inform decision-making* Packed with practical advice and tips to help you get to grips with data miningWho This Book Is ForIf you are a data scientist or R developer who wants to explore and optimize your use of R's advanced features and tools, this is the book for you. A basic knowledge of R is required, along with an understanding of database logic.What You Will Learn* Connect to and load data from R's range of powerful databases* Successfully fetch and parse structured and unstructured data* Transform and restructure your data with efficient R packages* Define and build complex statistical models with glm* Develop and train machine learning algorithms* Visualize social networks and graph data* Deploy supervised and unsupervised classification algorithms* Discover how to visualize spatial data with RIn DetailR is an essential language for sharp and successful data analysis. Its numerous features and ease of use make it a powerful way of mining, managing, and interpreting large sets of data. In a world where understanding big data has become key, by mastering R you will be able to deal with your data effectively and efficiently.This book will give you the guidance you need to build and develop your knowledge and expertise. Bridging the gap between theory and practice, this book will help you to understand and use data for a competitive advantage.Beginning with taking you through essential data mining and management tasks such as munging, fetching, cleaning, and restructuring, the book then explores different model designs and the core components of effective analysis. You will then discover how to optimize your use of machine learning algorithms for classification and recommendation systems beside the traditional and more recent statistical methods.Style and approachCovering the essential tasks and skills within data science, Mastering Data Analysis provides you with solutions to the challenges of data science. Each section gives you a theoretical overview before demonstrating how to put the theory to work with real-world use cases and hands-on examples.



Predictive Hr Analytics


Predictive Hr Analytics
DOWNLOAD
Author : Dr Martin R. Edwards
language : en
Publisher: Kogan Page Publishers
Release Date : 2019-03-03

Predictive Hr Analytics written by Dr Martin R. Edwards and has been published by Kogan Page Publishers this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-03-03 with Business & Economics categories.


HR metrics and organizational people-related data are an invaluable source of information from which to identify trends and patterns in order to make effective business decisions. But HR practitioners often lack the statistical and analytical know-how to fully harness the potential of this data. Predictive HR Analytics provides a clear, accessible framework for understanding and working with people analytics and advanced statistical techniques. Using the statistical package SPSS (with R syntax included), it takes readers step by step through worked examples, showing them how to carry out and interpret analyses of HR data in areas such as employee engagement, performance and turnover. Readers are shown how to use the results to enable them to develop effective evidence-based HR strategies. This second edition has been updated to include the latest material on machine learning, biased algorithms, data protection and GDPR considerations, a new example using survival analyses, and up-to-the-minute screenshots and examples with SPSS version 25. It is supported by a new appendix showing main R coding, and online resources consisting of SPSS and Excel data sets and R syntax with worked case study examples.



Mastering Predictive Analytics With R


Mastering Predictive Analytics With R
DOWNLOAD
Author : James D. Miller
language : en
Publisher:
Release Date : 2017

Mastering Predictive Analytics With R written by James D. Miller and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017 with R (Computer program language) categories.


Master the craft of predictive modeling in R by developing strategy, intuition, and a solid foundation in essential concepts About This Book Grasping the major methods of predictive modeling and moving beyond black box thinking to a deeper level of understanding Leveraging the flexibility and modularity of R to experiment with a range of different techniques and data types Packed with practical advice and tips explaining important concepts and best practices to help you understand quickly and easily Who This Book Is For Although budding data scientists, predictive modelers, or quantitative analysts with only basic exposure to R and statistics will find this book to be useful, the experienced data scientist professional wishing to attain master level status , will also find this book extremely valuable.. This book assumes familiarity with the fundamentals of R, such as the main data types, simple functions, and how to move data around. Although no prior experience with machine learning or predictive modeling is required, there are some advanced topics provided that will require more than novice exposure. What You Will Learn Master the steps involved in the predictive modeling process Grow your expertise in using R and its diverse range of packages Learn how to classify predictive models and distinguish which models are suitable for a particular problem Understand steps for tidying data and improving the performing metrics Recognize the assumptions, strengths, and weaknesses of a predictive model Understand how and why each predictive model works in R Select appropriate metrics to assess the performance of different types of predictive model Explore word embedding and recurrent neural networks in R Train models in R that can work on very large datasets In Detail R offers a free and open source environment that is perfect for both learning and deploying predictive modeling solutions. With its constantly growing community and plethora of packages, R offers the functionality to deal with a truly vast array of problems. The book begins with a dedicated chapter on the language of models and the predictive modeling process. You will understand the learning curve and the process of tidying data. Each subsequent chapter tackles a particular type of model, such as neural networks, and focuses on the three important questions of how the model works, how to use R to train it, and how to measure and assess its performance using real-world datasets. How do y...



Data Analysis With R Second Edition


Data Analysis With R Second Edition
DOWNLOAD
Author : Tony Fischetti
language : en
Publisher: Packt Publishing
Release Date : 2018-03-28

Data Analysis With R Second Edition written by Tony Fischetti and has been published by Packt Publishing this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-03-28 with Computers categories.


Frequently the tool of choice for academics, R has spread deep into the private sector and can be found in the production pipelines at some of the most advanced and successful enterprises. The power and domain-specificity of R allows the user to express complex analytics easily, quickly, and succinctly. Starting with the basics of R and statistical reasoning, this book dives into advanced predictive analytics, showing how to apply those techniques to real-world data though with real-world examples. Packed with engaging problems and exercises, this book begins with a review of R and its syntax with packages like Rcpp, ggplot2, and dplyr. From there, get to grips with the fundamentals of applied statistics and build on this knowledge to perform sophisticated and powerful analytics. Solve the difficulties relating to performing data analysis in practice and find solutions to working with messy data, large data, communicating results, and facilitating reproducibility. This book is engineered to be an invaluable resource through many stages of anyone's career as a data analyst.



Data Mining And Predictive Analytics


Data Mining And Predictive Analytics
DOWNLOAD
Author : Daniel T. Larose
language : en
Publisher: John Wiley & Sons
Release Date : 2015-03-16

Data Mining And Predictive Analytics written by Daniel T. Larose and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-03-16 with Computers categories.


Learn methods of data analysis and their application to real-world data sets This updated second edition serves as an introduction to data mining methods and models, including association rules, clustering, neural networks, logistic regression, and multivariate analysis. The authors apply a unified “white box” approach to data mining methods and models. This approach is designed to walk readers through the operations and nuances of the various methods, using small data sets, so readers can gain an insight into the inner workings of the method under review. Chapters provide readers with hands-on analysis problems, representing an opportunity for readers to apply their newly-acquired data mining expertise to solving real problems using large, real-world data sets. Data Mining and Predictive Analytics: Offers comprehensive coverage of association rules, clustering, neural networks, logistic regression, multivariate analysis, and R statistical programming language Features over 750 chapter exercises, allowing readers to assess their understanding of the new material Provides a detailed case study that brings together the lessons learned in the book Includes access to the companion website, www.dataminingconsultant, with exclusive password-protected instructor content Data Mining and Predictive Analytics will appeal to computer science and statistic students, as well as students in MBA programs, and chief executives.



Creating Value With Data Analytics In Marketing


Creating Value With Data Analytics In Marketing
DOWNLOAD
Author : Peter C. Verhoef
language : en
Publisher: Routledge
Release Date : 2021-11-07

Creating Value With Data Analytics In Marketing written by Peter C. Verhoef and has been published by Routledge this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-11-07 with Business & Economics categories.


This book is a refreshingly practical yet theoretically sound roadmap to leveraging data analytics and data science. The vast amount of data generated about us and our world is useless without plans and strategies that are designed to cope with its size and complexity, and which enable organizations to leverage the information to create value in marketing. Creating Value with Data Analytics in Marketing provides a nuanced view of big data developments and data science, arguing that big data is not a revolution but an evolution of the increasing availability of data that has been observed in recent times. Building on the authors’ extensive academic and practical knowledge, this book aims to provide managers and analysts with strategic directions and practical analytical solutions on how to create value from existing and new big data. The second edition of this bestselling text has been fully updated in line with developments in the field and includes a selection of new, international cases and examples, exercises, techniques and methodologies. Tying data and analytics to specific goals and processes for implementation makes this essential reading for advanced undergraduate and postgraduate students and specialists of data analytics, marketing research, marketing management and customer relationship management. Online resources include chapter-by-chapter lecture slides and data sets and corresponding R code for selected chapters.