[PDF] Mastering Scala Machine Learning - eBooks Review

Mastering Scala Machine Learning


Mastering Scala Machine Learning
DOWNLOAD

Download Mastering Scala Machine Learning PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Mastering Scala Machine Learning book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Mastering Scala Machine Learning


Mastering Scala Machine Learning
DOWNLOAD
Author : Alex Kozlov
language : en
Publisher: Packt Publishing Ltd
Release Date : 2016-06-28

Mastering Scala Machine Learning written by Alex Kozlov and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-06-28 with Computers categories.


Advance your skills in efficient data analysis and data processing using the powerful tools of Scala, Spark, and Hadoop About This Book This is a primer on functional-programming-style techniques to help you efficiently process and analyze all of your data Get acquainted with the best and newest tools available such as Scala, Spark, Parquet and MLlib for machine learning Learn the best practices to incorporate new Big Data machine learning in your data-driven enterprise to gain future scalability and maintainability Who This Book Is For Mastering Scala Machine Learning is intended for enthusiasts who want to plunge into the new pool of emerging techniques for machine learning. Some familiarity with standard statistical techniques is required. What You Will Learn Sharpen your functional programming skills in Scala using REPL Apply standard and advanced machine learning techniques using Scala Get acquainted with Big Data technologies and grasp why we need a functional approach to Big Data Discover new data structures, algorithms, approaches, and habits that will allow you to work effectively with large amounts of data Understand the principles of supervised and unsupervised learning in machine learning Work with unstructured data and serialize it using Kryo, Protobuf, Avro, and AvroParquet Construct reliable and robust data pipelines and manage data in a data-driven enterprise Implement scalable model monitoring and alerts with Scala In Detail Since the advent of object-oriented programming, new technologies related to Big Data are constantly popping up on the market. One such technology is Scala, which is considered to be a successor to Java in the area of Big Data by many, like Java was to C/C++ in the area of distributed programing. This book aims to take your knowledge to next level and help you impart that knowledge to build advanced applications such as social media mining, intelligent news portals, and more. After a quick refresher on functional programming concepts using REPL, you will see some practical examples of setting up the development environment and tinkering with data. We will then explore working with Spark and MLlib using k-means and decision trees. Most of the data that we produce today is unstructured and raw, and you will learn to tackle this type of data with advanced topics such as regression, classification, integration, and working with graph algorithms. Finally, you will discover at how to use Scala to perform complex concept analysis, to monitor model performance, and to build a model repository. By the end of this book, you will have gained expertise in performing Scala machine learning and will be able to build complex machine learning projects using Scala. Style and approach This hands-on guide dives straight into implementing Scala for machine learning without delving much into mathematical proofs or validations. There are ample code examples and tricks that will help you sail through using the standard techniques and libraries. This book provides practical examples from the field on how to correctly tackle data analysis problems, particularly for modern Big Data datasets.



Scala For Machine Learning


Scala For Machine Learning
DOWNLOAD
Author : Patrick R. Nicolas
language : en
Publisher:
Release Date : 2014-12-17

Scala For Machine Learning written by Patrick R. Nicolas and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-12-17 with Electronic books categories.


Are you curious about AI? All you need is a good understanding of the Scala programming language, a basic knowledge of statistics, a keen interest in Big Data processing, and this book!



Mastering Scala


Mastering Scala
DOWNLOAD
Author : Cybellium
language : en
Publisher: Cybellium Ltd
Release Date : 2023-09-26

Mastering Scala written by Cybellium and has been published by Cybellium Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-09-26 with Computers categories.


Are you ready to dive into the world of advanced programming with confidence and expertise? "Mastering Scala" is your gateway to unlocking the true power of the Scala programming language. Whether you're an experienced developer seeking to expand your horizons or a programming enthusiast ready to embark on a transformative journey, this comprehensive guide will equip you with the skills to develop elegant, scalable, and high-performance software. Key Features: 1. In-Depth Exploration of Scala Fundamentals: Immerse yourself in the core concepts of Scala programming, from its unique blend of object-oriented and functional paradigms to its expressive syntax. Build a strong foundation that enables you to tackle complex programming challenges. 2. Functional Programming Mastery: Discover the beauty of functional programming in Scala. Learn how to leverage higher-order functions, immutability, and pattern matching to create clean, maintainable code that is both concise and powerful. 3. Concurrency and Parallelism: Dive into Scala's concurrent and parallel programming capabilities. Explore actors, Futures, and parallel collections to build responsive, highly performant applications that excel in a multi-core world. 4. Advanced Data Structures and Algorithms: Elevate your programming skills by mastering advanced data structures and algorithms in Scala. From sets and maps to trees and graphs, learn how to solve intricate problems using Scala's powerful abstractions. 5. Building Robust Applications: Explore best practices for structuring and organizing your Scala projects. Gain insights into error handling, testing, and writing code that is not only functional but also robust and easy to maintain. 6. Leveraging Scala's Ecosystem: Maximize your productivity by exploring the vibrant ecosystem of Scala libraries and frameworks. From web development to data analysis, discover tools that will help you create software efficiently and effectively. 7. Type System and Advanced Language Features: Dive into Scala's sophisticated type system and explore advanced language features like implicits and type classes. Craft expressive, type-safe code that reflects the elegance of Scala. 8. Performance Optimization: Master the art of optimizing Scala applications for top-notch performance. Learn profiling techniques, memory management, and concurrency tuning to ensure your software runs efficiently. 9. Deployment and DevOps: Navigate the landscape of deploying Scala applications to various environments. Discover containerization and adopt DevOps practices that streamline your development-to-production pipeline. Who This Book Is For: "Mastering Scala" is an indispensable companion for developers of all skill levels who are passionate about mastering the Scala programming language. Whether you're a novice programmer or an experienced coder eager to embrace Scala's unique features, this book will guide you through the language's intricacies and empower you to create sophisticated, high-performance software.



Scala Applied Machine Learning


Scala Applied Machine Learning
DOWNLOAD
Author : Pascal Bugnion
language : en
Publisher:
Release Date : 2017-02-23

Scala Applied Machine Learning written by Pascal Bugnion and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-02-23 with categories.


Leverage the power of Scala and master the art of building, improving, and validating scalable machine learning and AI applications using Scala's most advanced and finest featuresAbout This Book- Build functional, type-safe routines to interact with relational and NoSQL databases with the help of the tutorials and examples provided- Leverage your expertise in Scala programming to create and customize your own scalable machine learning algorithms - Experiment with different techniques; evaluate their benefits and limitations using real-world financial applications - Get to know the best practices to incorporate new Big Data machine learning in your data-driven enterprise and gain future scalability and maintainabilityWho This Book Is ForThis Learning Path is for engineers and scientists who are familiar with Scala and want to learn how to create, validate, and apply machine learning algorithms. It will also benefit software developers with a background in Scala programming who want to apply machine learning.What You Will Learn- Create Scala web applications that couple with JavaScript libraries such as D3 to create compelling interactive visualizations- Deploy scalable parallel applications using Apache Spark, loading data from HDFS or Hive- Solve big data problems with Scala parallel collections, Akka actors, and Apache Spark clusters- Apply key learning strategies to perform technical analysis of financial markets- Understand the principles of supervised and unsupervised learning in machine learning- Work with unstructured data and serialize it using Kryo, Protobuf, Avro, and AvroParquet- Construct reliable and robust data pipelines and manage data in a data-driven enterprise- Implement scalable model monitoring and alerts with ScalaIn DetailThis Learning Path aims to put the entire world of machine learning with Scala in front of you. Scala for Data Science, the first module in this course, is a tutorial guide that provides tutorials on some of the most common Scala libraries for data science, allowing you to quickly get up to speed building data science and data engineering solutions.The second course, Scala for Machine Learning guides you through the process of building AI applications with diagrams, formal mathematical notation, source code snippets, and useful tips. A review of the Akka framework and Apache Spark clusters concludes the tutorial.The next module, Mastering Scala Machine Learning, is the final step in this course. It will take your knowledge to next level and help you use the knowledge to build advanced applications such as social media mining, intelligent news portals, and more. After a quick refresher on functional programming concepts using REPL, you will see some practical examples of setting up the development environment and tinkering with data. We will then explore working with Spark and MLlib using k-means and decision trees.By the end of this course, you will be a master at Scala machine learning and have enough expertise to be able to build complex machine learning projects using Scala.This Learning Path combines some of the best that Packt has to offer in one complete, curated package. It includes content from the following Packt products:- Scala for Data Science, Pascal Bugnion- Scala for Machine Learning, Patrick Nicolas- Mastering Scala Machine Learning, Alex KozlovStyle and approachA tutorial with complete examples, this course will give you the tools to start building useful data engineering and data science solutions straightaway. This course provides practical examples from the field on how to correctly tackle data analysis problems, particularly for modern Big Data datasets.



Mastering Spark With R


Mastering Spark With R
DOWNLOAD
Author : Javier Luraschi
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2019-10-07

Mastering Spark With R written by Javier Luraschi and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-10-07 with Computers categories.


If you’re like most R users, you have deep knowledge and love for statistics. But as your organization continues to collect huge amounts of data, adding tools such as Apache Spark makes a lot of sense. With this practical book, data scientists and professionals working with large-scale data applications will learn how to use Spark from R to tackle big data and big compute problems. Authors Javier Luraschi, Kevin Kuo, and Edgar Ruiz show you how to use R with Spark to solve different data analysis problems. This book covers relevant data science topics, cluster computing, and issues that should interest even the most advanced users. Analyze, explore, transform, and visualize data in Apache Spark with R Create statistical models to extract information and predict outcomes; automate the process in production-ready workflows Perform analysis and modeling across many machines using distributed computing techniques Use large-scale data from multiple sources and different formats with ease from within Spark Learn about alternative modeling frameworks for graph processing, geospatial analysis, and genomics at scale Dive into advanced topics including custom transformations, real-time data processing, and creating custom Spark extensions



Scala For Machine Learning Second Edition


Scala For Machine Learning Second Edition
DOWNLOAD
Author : Patrick R. Nicolas
language : en
Publisher: Packt Publishing
Release Date : 2017-09-26

Scala For Machine Learning Second Edition written by Patrick R. Nicolas and has been published by Packt Publishing this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-09-26 with Computers categories.


Leverage Scala and Machine Learning to study and construct systems that can learn from dataAbout This Book* Explore a broad variety of data processing, machine learning, and genetic algorithms through diagrams, mathematical formulation, and updated source code in Scala* Take your expertise in Scala programming to the next level by creating and customizing AI applications* Experiment with different techniques and evaluate their benefits and limitations using real-world applications in a tutorial styleWho This Book Is ForIf you're a data scientist or a data analyst with a fundamental knowledge of Scala who wants to learn and implement various Machine learning techniques, this book is for you. All you need is a good understanding of the Scala programming language, a basic knowledge of statistics, a keen interest in Big Data processing, and this book!What You Will Learn* Build dynamic workflows for scientific computing* Leverage open source libraries to extract patterns from time series* Write your own classification, clustering, or evolutionary algorithm* Perform relative performance tuning and evaluation of Spark* Master probabilistic models for sequential data* Experiment with advanced techniques such as regularization and kernelization* Dive into neural networks and some deep learning architecture* Apply some basic multiarm-bandit algorithms* Solve big data problems with Scala parallel collections, Akka actors, and Apache Spark clusters* Apply key learning strategies to a technical analysis of financial marketsIn DetailThe discovery of information through data clustering and classification is becoming a key differentiator for competitive organizations. Machine learning applications are everywhere, from self-driving cars, engineering design, logistics, manufacturing, and trading strategies, to detection of genetic anomalies.The book is your one stop guide that introduces you to the functional capabilities of the Scala programming language that are critical to the creation of machine learning algorithms such as dependency injection and implicits. You start by learning data preprocessing and filtering techniques. Following this, you'll move on to unsupervised learning techniques such as clustering and dimension reduction, followed by probabilistic graphical models such as Naive Bayes, hidden Markov models and Monte Carlo inference. Further, it covers the discriminative algorithms such as linear, logistic regression with regularization, kernelization, support vector machines, neural networks, and deep learning. You'll move on to evolutionary computing, multibandit algorithms, and reinforcement learning.Finally, the book includes a comprehensive overview of parallel computing in Scala and Akka followed by a description of Apache Spark and its ML library. With updated codes based on the latest version of Scala and comprehensive examples, this book will ensure that you have more than just a solid fundamental knowledge in machine learning with Scala.Style and approachThis book is designed as a tutorial with hands-on exercises using technical analysis of financial markets and corporate data. The approach of each chapter is such that it allows you to understand key concepts easily.



Scala Machine Learning Projects


Scala Machine Learning Projects
DOWNLOAD
Author : Md. Rezaul Karim
language : en
Publisher: Packt Publishing Ltd
Release Date : 2018-01-31

Scala Machine Learning Projects written by Md. Rezaul Karim and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-01-31 with Computers categories.


Powerful smart applications using deep learning algorithms to dominate numerical computing, deep learning, and functional programming. Key Features Explore machine learning techniques with prominent open source Scala libraries such as Spark ML, H2O, MXNet, Zeppelin, and DeepLearning4j Solve real-world machine learning problems by delving complex numerical computing with Scala functional programming in a scalable and faster way Cover all key aspects such as collection, storing, processing, analyzing, and evaluation required to build and deploy machine models on computing clusters using Scala Play framework. Book Description Machine learning has had a huge impact on academia and industry by turning data into actionable information. Scala has seen a steady rise in adoption over the past few years, especially in the fields of data science and analytics. This book is for data scientists, data engineers, and deep learning enthusiasts who have a background in complex numerical computing and want to know more hands-on machine learning application development. If you're well versed in machine learning concepts and want to expand your knowledge by delving into the practical implementation of these concepts using the power of Scala, then this book is what you need! Through 11 end-to-end projects, you will be acquainted with popular machine learning libraries such as Spark ML, H2O, DeepLearning4j, and MXNet. At the end, you will be able to use numerical computing and functional programming to carry out complex numerical tasks to develop, build, and deploy research or commercial projects in a production-ready environment. What you will learn Apply advanced regression techniques to boost the performance of predictive models Use different classification algorithms for business analytics Generate trading strategies for Bitcoin and stock trading using ensemble techniques Train Deep Neural Networks (DNN) using H2O and Spark ML Utilize NLP to build scalable machine learning models Learn how to apply reinforcement learning algorithms such as Q-learning for developing ML application Learn how to use autoencoders to develop a fraud detection application Implement LSTM and CNN models using DeepLearning4j and MXNet Who this book is for If you want to leverage the power of both Scala and Spark to make sense of Big Data, then this book is for you. If you are well versed with machine learning concepts and wants to expand your knowledge by delving into the practical implementation using the power of Scala, then this book is what you need! Strong understanding of Scala Programming language is recommended. Basic familiarity with machine Learning techniques will be more helpful.



Scala Applied Machine Learning


Scala Applied Machine Learning
DOWNLOAD
Author : Pascal Bugnion
language : en
Publisher: Packt Publishing Ltd
Release Date : 2017-02-23

Scala Applied Machine Learning written by Pascal Bugnion and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-02-23 with Computers categories.


Leverage the power of Scala and master the art of building, improving, and validating scalable machine learning and AI applications using Scala's most advanced and finest features About This Book Build functional, type-safe routines to interact with relational and NoSQL databases with the help of the tutorials and examples provided Leverage your expertise in Scala programming to create and customize your own scalable machine learning algorithms Experiment with different techniques; evaluate their benefits and limitations using real-world financial applications Get to know the best practices to incorporate new Big Data machine learning in your data-driven enterprise and gain future scalability and maintainability Who This Book Is For This Learning Path is for engineers and scientists who are familiar with Scala and want to learn how to create, validate, and apply machine learning algorithms. It will also benefit software developers with a background in Scala programming who want to apply machine learning. What You Will Learn Create Scala web applications that couple with JavaScript libraries such as D3 to create compelling interactive visualizations Deploy scalable parallel applications using Apache Spark, loading data from HDFS or Hive Solve big data problems with Scala parallel collections, Akka actors, and Apache Spark clusters Apply key learning strategies to perform technical analysis of financial markets Understand the principles of supervised and unsupervised learning in machine learning Work with unstructured data and serialize it using Kryo, Protobuf, Avro, and AvroParquet Construct reliable and robust data pipelines and manage data in a data-driven enterprise Implement scalable model monitoring and alerts with Scala In Detail This Learning Path aims to put the entire world of machine learning with Scala in front of you. Scala for Data Science, the first module in this course, is a tutorial guide that provides tutorials on some of the most common Scala libraries for data science, allowing you to quickly get up to speed building data science and data engineering solutions. The second course, Scala for Machine Learning guides you through the process of building AI applications with diagrams, formal mathematical notation, source code snippets, and useful tips. A review of the Akka framework and Apache Spark clusters concludes the tutorial. The next module, Mastering Scala Machine Learning, is the final step in this course. It will take your knowledge to next level and help you use the knowledge to build advanced applications such as social media mining, intelligent news portals, and more. After a quick refresher on functional programming concepts using REPL, you will see some practical examples of setting up the development environment and tinkering with data. We will then explore working with Spark and MLlib using k-means and decision trees. By the end of this course, you will be a master at Scala machine learning and have enough expertise to be able to build complex machine learning projects using Scala. This Learning Path combines some of the best that Packt has to offer in one complete, curated package. It includes content from the following Packt products: Scala for Data Science, Pascal Bugnion Scala for Machine Learning, Patrick Nicolas Mastering Scala Machine Learning, Alex Kozlov Style and approach A tutorial with complete examples, this course will give you the tools to start building useful data engineering and data science solutions straightaway. This course provides practical examples from the field on how to correctly tackle data analysis problems, particularly for modern Big Data datasets.



Mastering Java Machine Learning


Mastering Java Machine Learning
DOWNLOAD
Author : Dr. Uday Kamath
language : en
Publisher: Packt Publishing Ltd
Release Date : 2017-07-11

Mastering Java Machine Learning written by Dr. Uday Kamath and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-07-11 with Computers categories.


Become an advanced practitioner with this progressive set of master classes on application-oriented machine learning About This Book Comprehensive coverage of key topics in machine learning with an emphasis on both the theoretical and practical aspects More than 15 open source Java tools in a wide range of techniques, with code and practical usage. More than 10 real-world case studies in machine learning highlighting techniques ranging from data ingestion up to analyzing the results of experiments, all preparing the user for the practical, real-world use of tools and data analysis. Who This Book Is For This book will appeal to anyone with a serious interest in topics in Data Science or those already working in related areas: ideally, intermediate-level data analysts and data scientists with experience in Java. Preferably, you will have experience with the fundamentals of machine learning and now have a desire to explore the area further, are up to grappling with the mathematical complexities of its algorithms, and you wish to learn the complete ins and outs of practical machine learning. What You Will Learn Master key Java machine learning libraries, and what kind of problem each can solve, with theory and practical guidance. Explore powerful techniques in each major category of machine learning such as classification, clustering, anomaly detection, graph modeling, and text mining. Apply machine learning to real-world data with methodologies, processes, applications, and analysis. Techniques and experiments developed around the latest specializations in machine learning, such as deep learning, stream data mining, and active and semi-supervised learning. Build high-performing, real-time, adaptive predictive models for batch- and stream-based big data learning using the latest tools and methodologies. Get a deeper understanding of technologies leading towards a more powerful AI applicable in various domains such as Security, Financial Crime, Internet of Things, social networking, and so on. In Detail Java is one of the main languages used by practicing data scientists; much of the Hadoop ecosystem is Java-based, and it is certainly the language that most production systems in Data Science are written in. If you know Java, Mastering Machine Learning with Java is your next step on the path to becoming an advanced practitioner in Data Science. This book aims to introduce you to an array of advanced techniques in machine learning, including classification, clustering, anomaly detection, stream learning, active learning, semi-supervised learning, probabilistic graph modeling, text mining, deep learning, and big data batch and stream machine learning. Accompanying each chapter are illustrative examples and real-world case studies that show how to apply the newly learned techniques using sound methodologies and the best Java-based tools available today. On completing this book, you will have an understanding of the tools and techniques for building powerful machine learning models to solve data science problems in just about any domain. Style and approach A practical guide to help you explore machine learning—and an array of Java-based tools and frameworks—with the help of practical examples and real-world use cases.



Scala


Scala
DOWNLOAD
Author : Pascal Bugnion
language : en
Publisher:
Release Date : 2016

Scala written by Pascal Bugnion and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016 with Scala (Computer program language) categories.


Leverage the power of Scala and master the art of building, improving, and validating scalable machine learning and AI applications using Scala's most advanced and finest features About This Book Build functional, type-safe routines to interact with relational and NoSQL databases with the help of the tutorials and examples provided Leverage your expertise in Scala programming to create and customize your own scalable machine learning algorithms Experiment with different techniques; evaluate their benefits and limitations using real-world financial applications Get to know the best practices to incorporate new Big Data machine learning in your data-driven enterprise and gain future scalability and maintainability Who This Book Is For This Learning Path is for engineers and scientists who are familiar with Scala and want to learn how to create, validate, and apply machine learning algorithms. It will also benefit software developers with a background in Scala programming who want to apply machine learning. What You Will Learn Create Scala web applications that couple with JavaScript libraries such as D3 to create compelling interactive visualizations Deploy scalable parallel applications using Apache Spark, loading data from HDFS or Hive Solve big data problems with Scala parallel collections, Akka actors, and Apache Spark clusters Apply key learning strategies to perform technical analysis of financial markets Understand the principles of supervised and unsupervised learning in machine learning Work with unstructured data and serialize it using Kryo, Protobuf, Avro, and AvroParquet Construct reliable and robust data pipelines and manage data in a data-driven enterprise Implement scalable model monitoring and alerts with Scala In Detail This Learning Path aims to put the entire world of machine learning with Scala in front of you. Scala for Data Science, the first module in this course, is a tutorial guide that provides tutorials on some of the most common Scala libraries for data science, allowing you to quickly get up to speed building data science and data engineering solutions. The second course, Scala for Machine Learning guides you through the process of building AI applications with diagrams, formal mathematical notation, source code snippets, and useful tips. A review of the Akka framework and Apache Spark clusters concludes the tutorial. The next module, Mastering Scala Machine Learning, is the final step in this course. It will take yo...