Materials Data Science

DOWNLOAD
Download Materials Data Science PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Materials Data Science book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Machine Learning And Data Mining In Materials Science
DOWNLOAD
Author : Norbert Huber
language : en
Publisher: Frontiers Media SA
Release Date : 2020-04-22
Machine Learning And Data Mining In Materials Science written by Norbert Huber and has been published by Frontiers Media SA this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-04-22 with categories.
Materials Data Science
DOWNLOAD
Author : Stefan Sandfeld
language : en
Publisher: Springer Nature
Release Date : 2024-05-08
Materials Data Science written by Stefan Sandfeld and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-05-08 with Technology & Engineering categories.
This text covers all of the data science, machine learning, and deep learning topics relevant to materials science and engineering, accompanied by numerous examples and applications. Almost all methods and algorithms introduced are implemented “from scratch” using Python and NumPy. The book starts with an introduction to statistics and probabilities, explaining important concepts such as random variables and probability distributions, Bayes’ theorem and correlations, sampling techniques, and exploratory data analysis, and puts them in the context of materials science and engineering. Therefore, it serves as a valuable primer for both undergraduate and graduate students, as well as a review for research scientists and practicing engineers. The second part provides an in-depth introduction of (statistical) machine learning. It begins with outlining fundamental concepts and proceeds to explore a variety of supervised learning techniques for regression and classification, including advanced methods such as kernel regression and support vector machines. The section on unsupervised learning emphasizes principal component analysis, and also covers manifold learning (t-SNE and UMAP) and clustering techniques. Additionally, feature engineering, feature importance, and cross-validation are introduced. The final part on neural networks and deep learning aims to promote an understanding of these methods and dispel misconceptions that they are a “black box”. The complexity gradually increases until fully connected networks can be implemented. Advanced techniques and network architectures, including GANs, are implemented “from scratch” using Python and NumPy, which facilitates a comprehensive understanding of all the details and enables the user to conduct their own experiments in Deep Learning.
Hierarchical Materials Informatics
DOWNLOAD
Author : Surya R. Kalidindi
language : en
Publisher: Elsevier
Release Date : 2015-08-06
Hierarchical Materials Informatics written by Surya R. Kalidindi and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-08-06 with Technology & Engineering categories.
Custom design, manufacture, and deployment of new high performance materials for advanced technologies is critically dependent on the availability of invertible, high fidelity, structure-property-processing (SPP) linkages. Establishing these linkages presents a major challenge because of the need to cover unimaginably large dimensional spaces. Hierarchical Materials Informatics addresses objective, computationally efficient, mining of large ensembles of experimental and modeling datasets to extract this core materials knowledge. Furthermore, it aims to organize and present this high value knowledge in highly accessible forms to end users engaged in product design and design for manufacturing efforts. As such, this emerging field has a pivotal role in realizing the goals outlined in current strategic national initiatives such as the Materials Genome Initiative (MGI) and the Advanced Manufacturing Partnership (AMP). This book presents the foundational elements of this new discipline as it relates to the design, development, and deployment of hierarchical materials critical to advanced technologies. - Addresses a critical gap in new materials research and development by presenting a rigorous statistical framework for the quantification of microstructure - Contains several case studies illustrating the use of modern data analytic tools on microstructure datasets (both experimental and modeling)
Materials Informatics
DOWNLOAD
Author : Olexandr Isayev
language : en
Publisher: John Wiley & Sons
Release Date : 2019-12-04
Materials Informatics written by Olexandr Isayev and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-12-04 with Technology & Engineering categories.
Provides everything readers need to know for applying the power of informatics to materials science There is a tremendous interest in materials informatics and application of data mining to materials science. This book is a one-stop guide to the latest advances in these emerging fields. Bridging the gap between materials science and informatics, it introduces readers to up-to-date data mining and machine learning methods. It also provides an overview of state-of-the-art software and tools. Case studies illustrate the power of materials informatics in guiding the experimental discovery of new materials. Materials Informatics: Methods, Tools and Applications is presented in two parts?Methodological Aspects of Materials Informatics and Practical Aspects and Applications. The first part focuses on developments in software, databases, and high-throughput computational activities. Chapter topics include open quantum materials databases; the ICSD database; open crystallography databases; and more. The second addresses the latest developments in data mining and machine learning for materials science. Its chapters cover genetic algorithms and crystal structure prediction; MQSPR modeling in materials informatics; prediction of materials properties; amongst others. -Bridges the gap between materials science and informatics -Covers all the known methodologies and applications of materials informatics -Presents case studies that illustrate the power of materials informatics in guiding the experimental quest for new materials -Examines the state-of-the-art software and tools being used today Materials Informatics: Methods, Tools and Applications is a must-have resource for materials scientists, chemists, and engineers interested in the methods of materials informatics.
Handbook Of Materials Modeling
DOWNLOAD
Author : Sidney Yip
language : en
Publisher: Springer Science & Business Media
Release Date : 2007-11-17
Handbook Of Materials Modeling written by Sidney Yip and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-11-17 with Science categories.
The first reference of its kind in the rapidly emerging field of computational approachs to materials research, this is a compendium of perspective-providing and topical articles written to inform students and non-specialists of the current status and capabilities of modelling and simulation. From the standpoint of methodology, the development follows a multiscale approach with emphasis on electronic-structure, atomistic, and mesoscale methods, as well as mathematical analysis and rate processes. Basic models are treated across traditional disciplines, not only in the discussion of methods but also in chapters on crystal defects, microstructure, fluids, polymers and soft matter. Written by authors who are actively participating in the current development, this collection of 150 articles has the breadth and depth to be a major contributor toward defining the field of computational materials. In addition, there are 40 commentaries by highly respected researchers, presenting various views that should interest the future generations of the community. Subject Editors: Martin Bazant, MIT; Bruce Boghosian, Tufts University; Richard Catlow, Royal Institution; Long-Qing Chen, Pennsylvania State University; William Curtin, Brown University; Tomas Diaz de la Rubia, Lawrence Livermore National Laboratory; Nicolas Hadjiconstantinou, MIT; Mark F. Horstemeyer, Mississippi State University; Efthimios Kaxiras, Harvard University; L. Mahadevan, Harvard University; Dimitrios Maroudas, University of Massachusetts; Nicola Marzari, MIT; Horia Metiu, University of California Santa Barbara; Gregory C. Rutledge, MIT; David J. Srolovitz, Princeton University; Bernhardt L. Trout, MIT; Dieter Wolf, Argonne National Laboratory.
A Hands On Introduction To Data Science
DOWNLOAD
Author : Chirag Shah
language : en
Publisher: Cambridge University Press
Release Date : 2020-04-02
A Hands On Introduction To Data Science written by Chirag Shah and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-04-02 with Business & Economics categories.
An introductory textbook offering a low barrier entry to data science; the hands-on approach will appeal to students from a range of disciplines.
R For Data Science
DOWNLOAD
Author : Hadley Wickham
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2016-12-12
R For Data Science written by Hadley Wickham and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-12-12 with Computers categories.
Learn how to use R to turn raw data into insight, knowledge, and understanding. This book introduces you to R, RStudio, and the tidyverse, a collection of R packages designed to work together to make data science fast, fluent, and fun. Suitable for readers with no previous programming experience, R for Data Science is designed to get you doing data science as quickly as possible. Authors Hadley Wickham and Garrett Grolemund guide you through the steps of importing, wrangling, exploring, and modeling your data and communicating the results. You'll get a complete, big-picture understanding of the data science cycle, along with basic tools you need to manage the details. Each section of the book is paired with exercises to help you practice what you've learned along the way. You'll learn how to: Wrangle—transform your datasets into a form convenient for analysis Program—learn powerful R tools for solving data problems with greater clarity and ease Explore—examine your data, generate hypotheses, and quickly test them Model—provide a low-dimensional summary that captures true "signals" in your dataset Communicate—learn R Markdown for integrating prose, code, and results
Artificial Intelligence For Materials Science
DOWNLOAD
Author : Yuan Cheng
language : en
Publisher: Springer Nature
Release Date : 2021-03-26
Artificial Intelligence For Materials Science written by Yuan Cheng and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-03-26 with Technology & Engineering categories.
Machine learning methods have lowered the cost of exploring new structures of unknown compounds, and can be used to predict reasonable expectations and subsequently validated by experimental results. As new insights and several elaborative tools have been developed for materials science and engineering in recent years, it is an appropriate time to present a book covering recent progress in this field. Searchable and interactive databases can promote research on emerging materials. Recently, databases containing a large number of high-quality materials properties for new advanced materials discovery have been developed. These approaches are set to make a significant impact on human life and, with numerous commercial developments emerging, will become a major academic topic in the coming years. This authoritative and comprehensive book will be of interest to both existing researchers in this field as well as others in the materials science community who wish to take advantage of these powerful techniques. The book offers a global spread of authors, from USA, Canada, UK, Japan, France, Russia, China and Singapore, who are all world recognized experts in their separate areas. With content relevant to both academic and commercial points of view, and offering an accessible overview of recent progress and potential future directions, the book will interest graduate students, postgraduate researchers, and consultants and industrial engineers.
Materials Data For Cyclic Loading Unalloyed Steels
DOWNLOAD
Author : Chr Boller
language : en
Publisher:
Release Date : 1987
Materials Data For Cyclic Loading Unalloyed Steels written by Chr Boller and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 1987 with Alloys categories.
Guide To Intelligent Data Science
DOWNLOAD
Author : Michael R. Berthold
language : en
Publisher: Springer
Release Date : 2020-08-15
Guide To Intelligent Data Science written by Michael R. Berthold and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-08-15 with Computers categories.
Making use of data is not anymore a niche project but central to almost every project. With access to massive compute resources and vast amounts of data, it seems at least in principle possible to solve any problem. However, successful data science projects result from the intelligent application of: human intuition in combination with computational power; sound background knowledge with computer-aided modelling; and critical reflection of the obtained insights and results. Substantially updating the previous edition, then entitled Guide to Intelligent Data Analysis, this core textbook continues to provide a hands-on instructional approach to many data science techniques, and explains how these are used to solve real world problems. The work balances the practical aspects of applying and using data science techniques with the theoretical and algorithmic underpinnings from mathematics and statistics. Major updates on techniques and subject coverage (including deep learning) are included. Topics and features: guides the reader through the process of data science, following the interdependent steps of project understanding, data understanding, data blending and transformation, modeling, as well as deployment and monitoring; includes numerous examples using the open source KNIME Analytics Platform, together with an introductory appendix; provides a review of the basics of classical statistics that support and justify many data analysis methods, and a glossary of statistical terms; integrates illustrations and case-study-style examples to support pedagogical exposition; supplies further tools and information at an associated website. This practical and systematic textbook/reference is a “need-to-have” tool for graduate and advanced undergraduate students and essential reading for all professionals who face data science problems. Moreover, it is a “need to use, need to keep” resource following one's exploration of the subject.