[PDF] Mathematical Control Theory For Stochastic Partial Differential Equations - eBooks Review

Mathematical Control Theory For Stochastic Partial Differential Equations


Mathematical Control Theory For Stochastic Partial Differential Equations
DOWNLOAD

Download Mathematical Control Theory For Stochastic Partial Differential Equations PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Mathematical Control Theory For Stochastic Partial Differential Equations book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Mathematical Control Theory For Stochastic Partial Differential Equations


Mathematical Control Theory For Stochastic Partial Differential Equations
DOWNLOAD
Author : Qi Lü
language : en
Publisher: Springer Nature
Release Date : 2021-09-17

Mathematical Control Theory For Stochastic Partial Differential Equations written by Qi Lü and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-09-17 with Science categories.


This is the first book to systematically present control theory for stochastic distributed parameter systems, a comparatively new branch of mathematical control theory. The new phenomena and difficulties arising in the study of controllability and optimal control problems for this type of system are explained in detail. Interestingly enough, one has to develop new mathematical tools to solve some problems in this field, such as the global Carleman estimate for stochastic partial differential equations and the stochastic transposition method for backward stochastic evolution equations. In a certain sense, the stochastic distributed parameter control system is the most general control system in the context of classical physics. Accordingly, studying this field may also yield valuable insights into quantum control systems. A basic grasp of functional analysis, partial differential equations, and control theory for deterministic systems is the only prerequisite for reading this book.



Mathematical Control Of Coupled Pdes


Mathematical Control Of Coupled Pdes
DOWNLOAD
Author : Irena Lasiecka
language : en
Publisher: SIAM
Release Date : 2002-01-01

Mathematical Control Of Coupled Pdes written by Irena Lasiecka and has been published by SIAM this book supported file pdf, txt, epub, kindle and other format this book has been release on 2002-01-01 with Mathematics categories.




Trends In Control Theory And Partial Differential Equations


Trends In Control Theory And Partial Differential Equations
DOWNLOAD
Author : Fatiha Alabau-Boussouira
language : en
Publisher: Springer
Release Date : 2019-07-04

Trends In Control Theory And Partial Differential Equations written by Fatiha Alabau-Boussouira and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-07-04 with Mathematics categories.


This book presents cutting-edge contributions in the areas of control theory and partial differential equations. Over the decades, control theory has had deep and fruitful interactions with the theory of partial differential equations (PDEs). Well-known examples are the study of the generalized solutions of Hamilton-Jacobi-Bellman equations arising in deterministic and stochastic optimal control and the development of modern analytical tools to study the controllability of infinite dimensional systems governed by PDEs. In the present volume, leading experts provide an up-to-date overview of the connections between these two vast fields of mathematics. Topics addressed include regularity of the value function associated to finite dimensional control systems, controllability and observability for PDEs, and asymptotic analysis of multiagent systems. The book will be of interest for both researchers and graduate students working in these areas.



Optimal Stochastic Control Stochastic Target Problems And Backward Sde


Optimal Stochastic Control Stochastic Target Problems And Backward Sde
DOWNLOAD
Author : Nizar Touzi
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-09-25

Optimal Stochastic Control Stochastic Target Problems And Backward Sde written by Nizar Touzi and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-09-25 with Mathematics categories.


This book collects some recent developments in stochastic control theory with applications to financial mathematics. We first address standard stochastic control problems from the viewpoint of the recently developed weak dynamic programming principle. A special emphasis is put on the regularity issues and, in particular, on the behavior of the value function near the boundary. We then provide a quick review of the main tools from viscosity solutions which allow to overcome all regularity problems. We next address the class of stochastic target problems which extends in a nontrivial way the standard stochastic control problems. Here the theory of viscosity solutions plays a crucial role in the derivation of the dynamic programming equation as the infinitesimal counterpart of the corresponding geometric dynamic programming equation. The various developments of this theory have been stimulated by applications in finance and by relevant connections with geometric flows. Namely, the second order extension was motivated by illiquidity modeling, and the controlled loss version was introduced following the problem of quantile hedging. The third part specializes to an overview of Backward stochastic differential equations, and their extensions to the quadratic case.​



Stochastic Differential Equations And Applications


Stochastic Differential Equations And Applications
DOWNLOAD
Author : Avner Friedman
language : en
Publisher: Courier Corporation
Release Date : 2012-08-28

Stochastic Differential Equations And Applications written by Avner Friedman and has been published by Courier Corporation this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-08-28 with Mathematics categories.


This text develops the theory of systems of stochastic differential equations, and it presents applications in probability, partial differential equations, and stochastic control problems. Originally published in two volumes, it combines a book of basic theory and selected topics with a book of applications. The first part explores Markov processes and Brownian motion; the stochastic integral and stochastic differential equations; elliptic and parabolic partial differential equations and their relations to stochastic differential equations; the Cameron-Martin-Girsanov theorem; and asymptotic estimates for solutions. The section concludes with a look at recurrent and transient solutions. Volume 2 begins with an overview of auxiliary results in partial differential equations, followed by chapters on nonattainability, stability and spiraling of solutions; the Dirichlet problem for degenerate elliptic equations; small random perturbations of dynamical systems; and fundamental solutions of degenerate parabolic equations. Final chapters examine stopping time problems and stochastic games and stochastic differential games. Problems appear at the end of each chapter, and a familiarity with elementary probability is the sole prerequisite.



Stochastic Differential Inclusions And Applications


Stochastic Differential Inclusions And Applications
DOWNLOAD
Author : Michał Kisielewicz
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-06-12

Stochastic Differential Inclusions And Applications written by Michał Kisielewicz and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-06-12 with Mathematics categories.


​This book aims to further develop the theory of stochastic functional inclusions and their applications for describing the solutions of the initial and boundary value problems for partial differential inclusions. The self-contained volume is designed to introduce the reader in a systematic fashion, to new methods of the stochastic optimal control theory from the very beginning. The exposition contains detailed proofs and uses new and original methods to characterize the properties of stochastic functional inclusions that, up to the present time, have only been published recently by the author. The work is divided into seven chapters, with the first two acting as an introduction, containing selected material dealing with point- and set-valued stochastic processes, and the final two devoted to applications and optimal control problems. The book presents recent and pressing issues in stochastic processes, control, differential games, optimization and their application in finance, manufacturing, queueing networks, and climate control. Written by an award-winning author in the field of stochastic differential inclusions and their application to control theory, This book is intended for students and researchers in mathematics and applications; particularly those studying optimal control theory. It is also highly relevant for students of economics and engineering. The book can also be used as a reference on stochastic differential inclusions. Knowledge of select topics in analysis and probability theory are required.



Stochastic Partial Differential Equations An Introduction


Stochastic Partial Differential Equations An Introduction
DOWNLOAD
Author : Wei Liu
language : en
Publisher: Springer
Release Date : 2015-10-06

Stochastic Partial Differential Equations An Introduction written by Wei Liu and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-10-06 with Mathematics categories.


This book provides an introduction to the theory of stochastic partial differential equations (SPDEs) of evolutionary type. SPDEs are one of the main research directions in probability theory with several wide ranging applications. Many types of dynamics with stochastic influence in nature or man-made complex systems can be modelled by such equations. The theory of SPDEs is based both on the theory of deterministic partial differential equations, as well as on modern stochastic analysis. Whilst this volume mainly follows the ‘variational approach’, it also contains a short account on the ‘semigroup (or mild solution) approach’. In particular, the volume contains a complete presentation of the main existence and uniqueness results in the case of locally monotone coefficients. Various types of generalized coercivity conditions are shown to guarantee non-explosion, but also a systematic approach to treat SPDEs with explosion in finite time is developed. It is, so far, the only book where the latter and the ‘locally monotone case’ is presented in a detailed and complete way for SPDEs. The extension to this more general framework for SPDEs, for example, in comparison to the well-known case of globally monotone coefficients, substantially widens the applicability of the results.



Stochastic Optimal Control In Infinite Dimension


Stochastic Optimal Control In Infinite Dimension
DOWNLOAD
Author : Giorgio Fabbri
language : en
Publisher: Springer
Release Date : 2017-06-22

Stochastic Optimal Control In Infinite Dimension written by Giorgio Fabbri and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-06-22 with Mathematics categories.


Providing an introduction to stochastic optimal control in infinite dimension, this book gives a complete account of the theory of second-order HJB equations in infinite-dimensional Hilbert spaces, focusing on its applicability to associated stochastic optimal control problems. It features a general introduction to optimal stochastic control, including basic results (e.g. the dynamic programming principle) with proofs, and provides examples of applications. A complete and up-to-date exposition of the existing theory of viscosity solutions and regular solutions of second-order HJB equations in Hilbert spaces is given, together with an extensive survey of other methods, with a full bibliography. In particular, Chapter 6, written by M. Fuhrman and G. Tessitore, surveys the theory of regular solutions of HJB equations arising in infinite-dimensional stochastic control, via BSDEs. The book is of interest to both pure and applied researchers working in the control theory of stochastic PDEs, and in PDEs in infinite dimension. Readers from other fields who want to learn the basic theory will also find it useful. The prerequisites are: standard functional analysis, the theory of semigroups of operators and its use in the study of PDEs, some knowledge of the dynamic programming approach to stochastic optimal control problems in finite dimension, and the basics of stochastic analysis and stochastic equations in infinite-dimensional spaces.



Stochastic Partial Differential Equations And Related Fields


Stochastic Partial Differential Equations And Related Fields
DOWNLOAD
Author : Andreas Eberle
language : en
Publisher: Springer
Release Date : 2018-07-03

Stochastic Partial Differential Equations And Related Fields written by Andreas Eberle and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-07-03 with Mathematics categories.


This Festschrift contains five research surveys and thirty-four shorter contributions by participants of the conference ''Stochastic Partial Differential Equations and Related Fields'' hosted by the Faculty of Mathematics at Bielefeld University, October 10–14, 2016. The conference, attended by more than 140 participants, including PostDocs and PhD students, was held both to honor Michael Röckner's contributions to the field on the occasion of his 60th birthday and to bring together leading scientists and young researchers to present the current state of the art and promising future developments. Each article introduces a well-described field related to Stochastic Partial Differential Equations and Stochastic Analysis in general. In particular, the longer surveys focus on Dirichlet forms and Potential theory, the analysis of Kolmogorov operators, Fokker–Planck equations in Hilbert spaces, the theory of variational solutions to stochastic partial differential equations, singular stochastic partial differential equations and their applications in mathematical physics, as well as on the theory of regularity structures and paracontrolled distributions. The numerous research surveys make the volume especially useful for graduate students and researchers who wish to start work in the above-mentioned areas, or who want to be informed about the current state of the art.



Nonlinear Optimal Control Theory


Nonlinear Optimal Control Theory
DOWNLOAD
Author : Leonard David Berkovitz
language : en
Publisher: CRC Press
Release Date : 2012-08-25

Nonlinear Optimal Control Theory written by Leonard David Berkovitz and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-08-25 with Mathematics categories.


Nonlinear Optimal Control Theory presents a deep, wide-ranging introduction to the mathematical theory of the optimal control of processes governed by ordinary differential equations and certain types of differential equations with memory. Many examples illustrate the mathematical issues that need to be addressed when using optimal control techniques in diverse areas. Drawing on classroom-tested material from Purdue University and North Carolina State University, the book gives a unified account of bounded state problems governed by ordinary, integrodifferential, and delay systems. It also discusses Hamilton-Jacobi theory. By providing a sufficient and rigorous treatment of finite dimensional control problems, the book equips readers with the foundation to deal with other types of control problems, such as those governed by stochastic differential equations, partial differential equations, and differential games.