[PDF] Mathematical Methods In Optimization Of Differential Systems - eBooks Review

Mathematical Methods In Optimization Of Differential Systems


Mathematical Methods In Optimization Of Differential Systems
DOWNLOAD

Download Mathematical Methods In Optimization Of Differential Systems PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Mathematical Methods In Optimization Of Differential Systems book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Mathematical Methods In Optimization Of Differential Systems


Mathematical Methods In Optimization Of Differential Systems
DOWNLOAD
Author : Viorel Barbu
language : en
Publisher: Springer
Release Date : 2012-01-10

Mathematical Methods In Optimization Of Differential Systems written by Viorel Barbu and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-01-10 with Mathematics categories.


This work is a revised and enlarged edition of a book with the same title published in Romanian by the Publishing House of the Romanian Academy in 1989. It grew out of lecture notes for a graduate course given by the author at the University if Ia~i and was initially intended for students and readers primarily interested in applications of optimal control of ordinary differential equations. In this vision the book had to contain an elementary description of the Pontryagin maximum principle and a large number of examples and applications from various fields of science. The evolution of control science in the last decades has shown that its meth ods and tools are drawn from a large spectrum of mathematical results which go beyond the classical theory of ordinary differential equations and real analy ses. Mathematical areas such as functional analysis, topology, partial differential equations and infinite dimensional dynamical systems, geometry, played and will continue to play an increasing role in the development of the control sciences. On the other hand, control problems is a rich source of deep mathematical problems. Any presentation of control theory which for the sake of accessibility ignores these facts is incomplete and unable to attain its goals. This is the reason we considered necessary to widen the initial perspective of the book and to include a rigorous mathematical treatment of optimal control theory of processes governed by ordi nary differential equations and some typical problems from theory of distributed parameter systems.



Optimization Of Elliptic Systems


Optimization Of Elliptic Systems
DOWNLOAD
Author : Pekka Neittaanmaki
language : en
Publisher: Springer Science & Business Media
Release Date : 2007-01-04

Optimization Of Elliptic Systems written by Pekka Neittaanmaki and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-01-04 with Mathematics categories.


The present monograph is intended to provide a comprehensive and accessible introduction to the optimization of elliptic systems. This area of mathematical research, which has many important applications in science and technology. has experienced an impressive development during the past two decades. There are already many good textbooks dealing with various aspects of optimal design problems. In this regard, we refer to the works of Pironneau [1984], Haslinger and Neittaanmaki [1988], [1996], Sokolowski and Zolksio [1992], Litvinov [2000], Allaire [2001], Mohammadi and Pironneau [2001], Delfour and Zolksio [2001], and Makinen and Haslinger [2003]. Already Lions [I9681 devoted a major part of his classical monograph on the optimal control of partial differential equations to the optimization of elliptic systems. Let us also mention that even the very first known problem of the calculus of variations, the brachistochrone studied by Bernoulli back in 1696. is in fact a shape optimization problem. The natural richness of this mathematical research subject, as well as the extremely large field of possible applications, has created the unusual situation that although many important results and methods have already been est- lished, there are still pressing unsolved questions. In this monograph, we aim to address some of these open problems; as a consequence, there is only a minor overlap with the textbooks already existing in the field.



Recent Advances In Differential Equations And Control Theory


Recent Advances In Differential Equations And Control Theory
DOWNLOAD
Author : Concepción Muriel
language : en
Publisher: Springer Nature
Release Date : 2021-03-13

Recent Advances In Differential Equations And Control Theory written by Concepción Muriel and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-03-13 with Mathematics categories.


This book collects the latest results and new trends in the application of mathematics to some problems in control theory, numerical simulation and differential equations. The work comprises the main results presented at a thematic minisymposium, part of the 9th International Congress on Industrial and Applied Mathematics (ICIAM 2019), held in Valencia, Spain, from 15 to 18 July 2019. The topics covered in the 6 peer-review contributions involve applications of numerical methods to real problems in oceanography and naval engineering, as well as relevant results on switching control techniques, which can have multiple applications in industrial complexes, electromechanical machines, biological systems, etc. Problems in control theory, as in most engineering problems, are modeled by differential equations, for which standard solving procedures may be insufficient. The book also includes recent geometric and analytical methods for the search of exact solutions for differential equations, which serve as essential tools for analyzing problems in many scientific disciplines.



Mathematical Methods In Engineering


Mathematical Methods In Engineering
DOWNLOAD
Author : Kenan Taş
language : en
Publisher: Springer
Release Date : 2019-01-05

Mathematical Methods In Engineering written by Kenan Taş and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-01-05 with Technology & Engineering categories.


This book presents recent developments in nonlinear dynamics with an emphasis on complex systems. The volume illustrates new methods to characterize the solutions of nonlinear dynamics associated with complex systems. This book contains the following topics: new solutions of the functional equations, optimization algorithm for traveling salesman problem, fractals, control, fractional calculus models, fractional discretization, local fractional partial differential equations and their applications, and solutions of fractional kinetic equations.



Real Time Pde Constrained Optimization


Real Time Pde Constrained Optimization
DOWNLOAD
Author : Lorenz T. Biegler
language : en
Publisher: SIAM
Release Date : 2007-07-12

Real Time Pde Constrained Optimization written by Lorenz T. Biegler and has been published by SIAM this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-07-12 with Mathematics categories.


“…a timely contribution to a field of growing importance. This carefully edited book presents a rich collection of chapters ranging from mathematical methodology to emerging applications. I recommend it to students as a rigorous and comprehensive presentation of simulation-based optimization and to researchers as an overview of recent advances and challenges in the field.” — Jorge Nocedal, Professor, Northwestern University.Many engineering and scientific problems in design, control, and parameter estimation can be formulated as optimization problems that are governed by partial differential equations (PDEs). The complexities of the PDEs—and the requirement for rapid solution—pose significant difficulties. A particularly challenging class of PDE-constrained optimization problems is characterized by the need for real-time solution, i.e., in time scales that are sufficiently rapid to support simulation-based decision making. Real-Time PDE-Constrained Optimization, the first book devoted to real-time optimization for systems governed by PDEs, focuses on new formulations, methods, and algorithms needed to facilitate real-time, PDE-constrained optimization. In addition to presenting state-of-the-art algorithms and formulations, the text illustrates these algorithms with a diverse set of applications that includes problems in the areas of aerodynamics, biology, fluid dynamics, medicine, chemical processes, homeland security, and structural dynamics. Despite difficulties, there is a pressing need to capitalize on continuing advances in computing power to develop optimization methods that will replace simple rule-based decision making with optimized decisions based on complex PDE simulations. Audience The book is aimed at readers who have expertise in simulation and are interested in incorporating optimization into their simulations, who have expertise in numerical optimization and are interested in adapting optimization methods to the class of infinite-dimensional simulation problems, or who have worked in “offline” optimization contexts and are interested in moving to “online” optimization.Contents Preface; Part I: Concepts and Properties of Real-Time, Online Strategies. Chapter 1: Constrained Optimal Feedback Control of Systems Governed by Large Differential Algebraic Equations; Chapter 2: A Stabilizing Real-Time Implementation of Nonlinear Model Predictive Control; Chapter 3: Numerical Feedback Controller Design for PDE Systems Using Model Reduction: Techniques and Case Studies; Chapter 4: Least-Squares Finite Element Method for Optimization and Control Problems; Part II: Fast PDE-Constrained Optimization Solvers. Chapter 5: Space-Time Multigrid Methods for Solving Unsteady Optimal Control Problems; Chapter 6: A Time-Parallel Implicit Methodology for the Near-Real-Time Solution of Systems of Linear Oscillators; Chapter 7: Generalized SQP Methods with “Parareal” Time-Domain Decomposition for Time-Dependent PDE-Constrained Optimization; Chapter 8: Simultaneous Pseudo-Timestepping for State-Constrained Optimization Problems in Aerodynamics; Chapter 9: Digital Filter Stepsize Control in DASPK and Its Effect on Control Optimization Performance; Part III: Reduced Order Modeling. Chapter 10: Certified Rapid Solution of Partial Differential Equations for Real-Time Parameter Estimation and Optimization; Chapter 11: Model Reduction for Large-Scale Applications in Computational Fluid Dynamics; Chapter 12: Suboptimal Feedback Control of Flow Separation by POD Model Reduction; Part IV: Applications. Chapter 13: A Combined Shape-Newton and Topology Optimization Technique in Real-Time Image Segmentation; Chapter 14: COFIR: Coarse and Fine Image Registration; Chapter 15: Real-Time, Large Scale Optimization of Water Network Systems Using a Sub-domain Approach; Index.



Mathematical Methods In Engineering


Mathematical Methods In Engineering
DOWNLOAD
Author : K. Tas
language : en
Publisher: Springer Science & Business Media
Release Date : 2007-11-25

Mathematical Methods In Engineering written by K. Tas and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-11-25 with Technology & Engineering categories.


This book contains some of the contributions that have been carefully selected and peer-reviewed, which were presented at the International Symposium MME06 Mathematical Methods in Engineering, held in Cankaya University, Ankara, April 2006. The Symposium provided a setting for discussing recent developments in Fractional Mathematics, Neutrices and Generalized Functions, Boundary Value Problems, Applications of Wavelets, Dynamical Systems and Control Theory.



Methods Of Applied Mathematics For Engineers And Scientists


Methods Of Applied Mathematics For Engineers And Scientists
DOWNLOAD
Author : Tomas B. Co
language : en
Publisher: Cambridge University Press
Release Date : 2013-06-28

Methods Of Applied Mathematics For Engineers And Scientists written by Tomas B. Co and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-06-28 with Mathematics categories.


This engineering mathematics textbook is rich with examples, applications and exercises, and emphasises applying matrices.



Optimal Control Of Partial Differential Equations


Optimal Control Of Partial Differential Equations
DOWNLOAD
Author : Fredi Tröltzsch
language : en
Publisher: American Mathematical Soc.
Release Date : 2010

Optimal Control Of Partial Differential Equations written by Fredi Tröltzsch and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010 with Mathematics categories.


Optimal control theory is concerned with finding control functions that minimize cost functions for systems described by differential equations. This book focuses on optimal control problems where the state equation is an elliptic or parabolic partial differential equation. It includes topics on the existence of optimal solutions.



Reduced Basis Methods For Partial Differential Equations


Reduced Basis Methods For Partial Differential Equations
DOWNLOAD
Author : Alfio Quarteroni
language : en
Publisher: Springer
Release Date : 2015-08-19

Reduced Basis Methods For Partial Differential Equations written by Alfio Quarteroni and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-08-19 with Mathematics categories.


This book provides a basic introduction to reduced basis (RB) methods for problems involving the repeated solution of partial differential equations (PDEs) arising from engineering and applied sciences, such as PDEs depending on several parameters and PDE-constrained optimization. The book presents a general mathematical formulation of RB methods, analyzes their fundamental theoretical properties, discusses the related algorithmic and implementation aspects, and highlights their built-in algebraic and geometric structures. More specifically, the authors discuss alternative strategies for constructing accurate RB spaces using greedy algorithms and proper orthogonal decomposition techniques, investigate their approximation properties and analyze offline-online decomposition strategies aimed at the reduction of computational complexity. Furthermore, they carry out both a priori and a posteriori error analysis. The whole mathematical presentation is made more stimulating by the use of representative examples of applicative interest in the context of both linear and nonlinear PDEs. Moreover, the inclusion of many pseudocodes allows the reader to easily implement the algorithms illustrated throughout the text. The book will be ideal for upper undergraduate students and, more generally, people interested in scientific computing. All these pseudocodes are in fact implemented in a MATLAB package that is freely available at https://github.com/redbkit



Methods Of Mathematical Modelling


Methods Of Mathematical Modelling
DOWNLOAD
Author : Thomas Witelski
language : en
Publisher: Springer
Release Date : 2015-09-18

Methods Of Mathematical Modelling written by Thomas Witelski and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-09-18 with Mathematics categories.


This book presents mathematical modelling and the integrated process of formulating sets of equations to describe real-world problems. It describes methods for obtaining solutions of challenging differential equations stemming from problems in areas such as chemical reactions, population dynamics, mechanical systems, and fluid mechanics. Chapters 1 to 4 cover essential topics in ordinary differential equations, transport equations and the calculus of variations that are important for formulating models. Chapters 5 to 11 then develop more advanced techniques including similarity solutions, matched asymptotic expansions, multiple scale analysis, long-wave models, and fast/slow dynamical systems. Methods of Mathematical Modelling will be useful for advanced undergraduate or beginning graduate students in applied mathematics, engineering and other applied sciences.