Mathematical Methods Using Python

DOWNLOAD
Download Mathematical Methods Using Python PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Mathematical Methods Using Python book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Mathematical Methods Using Python
DOWNLOAD
Author : Vasilis Pagonis
language : en
Publisher: CRC Press
Release Date : 2024-05-14
Mathematical Methods Using Python written by Vasilis Pagonis and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-05-14 with Computers categories.
This advanced undergraduate textbook presents a new approach to teaching mathematical methods for scientists and engineers. It provides a practical, pedagogical introduction to utilizing Python in Mathematical and Computational Methods courses. Both analytical and computational examples are integrated from its start. Each chapter concludes with a set of problems designed to help students hone their skills in mathematical techniques, computer programming, and numerical analysis. The book places less emphasis on mathematical proofs, and more emphasis on how to use computers for both symbolic and numerical calculations. It contains 182 extensively documented coding examples, based on topics that students will encounter in their advanced courses in Mechanics, Electronics, Optics, Electromagnetism, Quantum Mechanics etc. An introductory chapter gives students a crash course in Python programming and the most often used libraries (SymPy, NumPy, SciPy, Matplotlib). This is followed by chapters dedicated to differentiation, integration, vectors and multiple integration techniques. The next group of chapters covers complex numbers, matrices, vector analysis and vector spaces. Extensive chapters cover ordinary and partial differential equations, followed by chapters on nonlinear systems and on the analysis of experimental data using linear and nonlinear regression techniques, Fourier transforms, binomial and Gaussian distributions. The book is accompanied by a dedicated GitHub website, which contains all codes from the book in the form of ready to run Jupyter notebooks. A detailed solutions manual is also available for instructors using the textbook in their courses. Key Features: A unique teaching approach which merges mathematical methods and the Python programming skills which physicists and engineering students need in their courses Uses examples and models from physical and engineering systems, to motivate the mathematics being taught Students learn to solve scientific problems in three different ways: traditional pen-and-paper methods, using scientific numerical techniques with NumPy and SciPy, and using Symbolic Python (SymPy).
Mathematical Methods Using Python
DOWNLOAD
Author : Vasilis Pagonis
language : en
Publisher: CRC Press
Release Date : 2024-05-14
Mathematical Methods Using Python written by Vasilis Pagonis and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-05-14 with Computers categories.
This advanced undergraduate textbook presents a new approach to teaching mathematical methods for scientists and engineers. It provides a practical, pedagogical introduction to utilizing Python in Mathematical and Computational Methods courses. Both analytical and computational examples are integrated from its start. Each chapter concludes with a set of problems designed to help students hone their skills in mathematical techniques, computer programming, and numerical analysis. The book places less emphasis on mathematical proofs, and more emphasis on how to use computers for both symbolic and numerical calculations. It contains 182 extensively documented coding examples, based on topics that students will encounter in their advanced courses in Mechanics, Electronics, Optics, Electromagnetism, Quantum Mechanics etc. An introductory chapter gives students a crash course in Python programming and the most often used libraries (SymPy, NumPy, SciPy, Matplotlib). This is followed by chapters dedicated to differentiation, integration, vectors and multiple integration techniques. The next group of chapters covers complex numbers, matrices, vector analysis and vector spaces. Extensive chapters cover ordinary and partial differential equations, followed by chapters on nonlinear systems and on the analysis of experimental data using linear and nonlinear regression techniques, Fourier transforms, binomial and Gaussian distributions. The book is accompanied by a dedicated GitHub website, which contains all codes from the book in the form of ready to run Jupyter notebooks. A detailed solutions manual is also available for instructors using the textbook in their courses. Key Features: A unique teaching approach which merges mathematical methods and the Python programming skills which physicists and engineering students need in their courses Uses examples and models from physical and engineering systems, to motivate the mathematics being taught Students learn to solve scientific problems in three different ways: traditional pen-and-paper methods, using scientific numerical techniques with NumPy and SciPy, and using Symbolic Python (SymPy).
Mathematical Physics Using Python
DOWNLOAD
Author : Vasilis Pagonis
language : en
Publisher:
Release Date : 2024
Mathematical Physics Using Python written by Vasilis Pagonis and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024 with Science categories.
"This advanced undergraduate textbook provides a practical, pedagogical lead introduction to utilizing Python for Mathematical Physics and Computational Physics courses. Both analytical and computational example problems are integrated from its start, in addition to featuring end of chapter problems, designed to help students hone their skills in mathematical physics techniques, computer programming, and in numerical analysis. It places much less emphasis on mathematical proofs, and more emphasis on how to use computers for both numerical and symbolic calculations. This book will, therefore, provide both students and instructors with a clear presentation of the typical topics covered in a Mathematical Physics course and will present an accessible and practical instruction on how to use computational techniques to solve physics problems, by using the Python programming language. Students using the textbook will solve physics problems in three different ways: (a) Using the traditional pen-and-paper methods (b) Using scientific numerical techniques with the Python packages NumPy and SciPy (c) Using the Symbolic Python packages (e.g. SymPy). The book is accompanied by a dedicated GitHub website, which will contain all sample code used in the examples. In the same website, links will be provided for the many available resources online that a student can use in order to learn about specific Python topics. A solutions manual is also available for instructors using the textbook in their course"--
Numerical Methods In Physics With Python
DOWNLOAD
Author : Alex Gezerlis
language : en
Publisher: Cambridge University Press
Release Date : 2023-07-20
Numerical Methods In Physics With Python written by Alex Gezerlis and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-07-20 with Computers categories.
A standalone text on computational physics combining idiomatic Python, foundational numerical methods, and physics applications.
Math And Architectures Of Deep Learning
DOWNLOAD
Author : Krishnendu Chaudhury
language : en
Publisher: Simon and Schuster
Release Date : 2024-05-21
Math And Architectures Of Deep Learning written by Krishnendu Chaudhury and has been published by Simon and Schuster this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-05-21 with Computers categories.
Shine a spotlight into the deep learning “black box”. This comprehensive and detailed guide reveals the mathematical and architectural concepts behind deep learning models, so you can customize, maintain, and explain them more effectively. Inside Math and Architectures of Deep Learning you will find: Math, theory, and programming principles side by side Linear algebra, vector calculus and multivariate statistics for deep learning The structure of neural networks Implementing deep learning architectures with Python and PyTorch Troubleshooting underperforming models Working code samples in downloadable Jupyter notebooks The mathematical paradigms behind deep learning models typically begin as hard-to-read academic papers that leave engineers in the dark about how those models actually function. Math and Architectures of Deep Learning bridges the gap between theory and practice, laying out the math of deep learning side by side with practical implementations in Python and PyTorch. Written by deep learning expert Krishnendu Chaudhury, you’ll peer inside the “black box” to understand how your code is working, and learn to comprehend cutting-edge research you can turn into practical applications. Foreword by Prith Banerjee. About the technology Discover what’s going on inside the black box! To work with deep learning you’ll have to choose the right model, train it, preprocess your data, evaluate performance and accuracy, and deal with uncertainty and variability in the outputs of a deployed solution. This book takes you systematically through the core mathematical concepts you’ll need as a working data scientist: vector calculus, linear algebra, and Bayesian inference, all from a deep learning perspective. About the book Math and Architectures of Deep Learning teaches the math, theory, and programming principles of deep learning models laid out side by side, and then puts them into practice with well-annotated Python code. You’ll progress from algebra, calculus, and statistics all the way to state-of-the-art DL architectures taken from the latest research. What's inside The core design principles of neural networks Implementing deep learning with Python and PyTorch Regularizing and optimizing underperforming models About the reader Readers need to know Python and the basics of algebra and calculus. About the author Krishnendu Chaudhury is co-founder and CTO of the AI startup Drishti Technologies. He previously spent a decade each at Google and Adobe. Table of Contents 1 An overview of machine learning and deep learning 2 Vectors, matrices, and tensors in machine learning 3 Classifiers and vector calculus 4 Linear algebraic tools in machine learning 5 Probability distributions in machine learning 6 Bayesian tools for machine learning 7 Function approximation: How neural networks model the world 8 Training neural networks: Forward propagation and backpropagation 9 Loss, optimization, and regularization 10 Convolutions in neural networks 11 Neural networks for image classification and object detection 12 Manifolds, homeomorphism, and neural networks 13 Fully Bayes model parameter estimation 14 Latent space and generative modeling, autoencoders, and variational autoencoders A Appendix
Python Programming And Numerical Methods
DOWNLOAD
Author : Qingkai Kong
language : en
Publisher: Academic Press
Release Date : 2020-12-02
Python Programming And Numerical Methods written by Qingkai Kong and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-12-02 with Technology & Engineering categories.
Python Programming and Numerical Methods: A Guide for Engineers and Scientists introduces programming tools and numerical methods to engineering and science students, with the goal of helping the students to develop good computational problem-solving techniques through the use of numerical methods and the Python programming language. Part One introduces fundamental programming concepts, using simple examples to put new concepts quickly into practice. Part Two covers the fundamentals of algorithms and numerical analysis at a level that allows students to quickly apply results in practical settings.
Numerical Methods In Engineering With Python 3
DOWNLOAD
Author : Jaan Kiusalaas
language : en
Publisher: Cambridge University Press
Release Date : 2013-01-21
Numerical Methods In Engineering With Python 3 written by Jaan Kiusalaas and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-01-21 with Computers categories.
Provides an introduction to numerical methods for students in engineering. It uses Python 3, an easy-to-use, high-level programming language.
Principles Of Planetary Climate
DOWNLOAD
Author : Raymond T. Pierrehumbert
language : en
Publisher: Cambridge University Press
Release Date : 2010-12-02
Principles Of Planetary Climate written by Raymond T. Pierrehumbert and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-12-02 with Science categories.
This book introduces the reader to all the basic physical building blocks of climate needed to understand the present and past climate of Earth, the climates of Solar System planets, and the climates of extrasolar planets. These building blocks include thermodynamics, infrared radiative transfer, scattering, surface heat transfer and various processes governing the evolution of atmospheric composition. Nearly four hundred problems are supplied to help consolidate the reader's understanding, and to lead the reader towards original research on planetary climate. This textbook is invaluable for advanced undergraduate or beginning graduate students in atmospheric science, Earth and planetary science, astrobiology, and physics. It also provides a superb reference text for researchers in these subjects, and is very suitable for academic researchers trained in physics or chemistry who wish to rapidly gain enough background to participate in the excitement of the new research opportunities opening in planetary climate.
Mathematical Methods In The Earth And Environmental Sciences
DOWNLOAD
Author : Adrian Burd
language : en
Publisher: Cambridge University Press
Release Date : 2019-04-18
Mathematical Methods In The Earth And Environmental Sciences written by Adrian Burd and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-04-18 with Mathematics categories.
An accessible introduction to the mathematical methods essential for understanding processes in the Earth and environmental sciences.
A Primer On Scientific Programming With Python
DOWNLOAD
Author : Hans Petter Langtangen
language : en
Publisher: Springer
Release Date : 2014-08-01
A Primer On Scientific Programming With Python written by Hans Petter Langtangen and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-08-01 with Computers categories.
The book serves as a first introduction to computer programming of scientific applications, using the high-level Python language. The exposition is example and problem-oriented, where the applications are taken from mathematics, numerical calculus, statistics, physics, biology and finance. The book teaches "Matlab-style" and procedural programming as well as object-oriented programming. High school mathematics is a required background and it is advantageous to study classical and numerical one-variable calculus in parallel with reading this book. Besides learning how to program computers, the reader will also learn how to solve mathematical problems, arising in various branches of science and engineering, with the aid of numerical methods and programming. By blending programming, mathematics and scientific applications, the book lays a solid foundation for practicing computational science. From the reviews: Langtangen ... does an excellent job of introducing programming as a set of skills in problem solving. He guides the reader into thinking properly about producing program logic and data structures for modeling real-world problems using objects and functions and embracing the object-oriented paradigm. ... Summing Up: Highly recommended. F. H. Wild III, Choice, Vol. 47 (8), April 2010 Those of us who have learned scientific programming in Python ‘on the streets’ could be a little jealous of students who have the opportunity to take a course out of Langtangen’s Primer.” John D. Cook, The Mathematical Association of America, September 2011 This book goes through Python in particular, and programming in general, via tasks that scientists will likely perform. It contains valuable information for students new to scientific computing and would be the perfect bridge between an introduction to programming and an advanced course on numerical methods or computational science. Alex Small, IEEE, CiSE Vol. 14 (2), March /April 2012