Mathematical Modeling For Complex Fluids And Flows

DOWNLOAD
Download Mathematical Modeling For Complex Fluids And Flows PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Mathematical Modeling For Complex Fluids And Flows book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Mathematical Modeling For Complex Fluids And Flows
DOWNLOAD
Author : Michel Deville
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-01-12
Mathematical Modeling For Complex Fluids And Flows written by Michel Deville and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-01-12 with Mathematics categories.
Mathematical Modeling for Complex Fluids and Flows provides researchers and engineering practitioners encountering fluid flows with state-of-the-art knowledge in continuum concepts and associated fluid dynamics. In doing so it supplies the means to design mathematical models of these flows that adequately express the engineering physics involved. It exploits the implicit link between the turbulent flow of classical Newtonian fluids and the laminar and turbulent flow of non-Newtonian fluids such as those required in food processing and polymeric flows. The book develops a descriptive mathematical model articulated through continuum mechanics concepts for these non-Newtonian, viscoelastic fluids and turbulent flows. Each complex fluid and flow is examined in this continuum context as well as in combination with the turbulent flow of viscoelastic fluids. Some details are also explored via kinetic theory, especially viscoelastic fluids and their treatment with the Boltzmann equation. Both solution and modeling strategies for turbulent flows are laid out using continuum concepts, including a description of constructing polynomial representations and accounting for non-inertial and curvature effects. Ranging from fundamental concepts to practical methodology, and including discussion of emerging technologies, this book is ideal for those requiring a single-source assessment of current practice in this intricate yet vital field.
Mathematical Modeling For Complex Fluids And Flows
DOWNLOAD
Author : Michel Deville
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-01-13
Mathematical Modeling For Complex Fluids And Flows written by Michel Deville and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-01-13 with Mathematics categories.
Mathematical Modeling for Complex Fluids and Flows provides researchers and engineering practitioners encountering fluid flows with state-of-the-art knowledge in continuum concepts and associated fluid dynamics. In doing so it supplies the means to design mathematical models of these flows that adequately express the engineering physics involved. It exploits the implicit link between the turbulent flow of classical Newtonian fluids and the laminar and turbulent flow of non-Newtonian fluids such as those required in food processing and polymeric flows. The book develops a descriptive mathematical model articulated through continuum mechanics concepts for these non-Newtonian, viscoelastic fluids and turbulent flows. Each complex fluid and flow is examined in this continuum context as well as in combination with the turbulent flow of viscoelastic fluids. Some details are also explored via kinetic theory, especially viscoelastic fluids and their treatment with the Boltzmann equation. Both solution and modeling strategies for turbulent flows are laid out using continuum concepts, including a description of constructing polynomial representations and accounting for non-inertial and curvature effects. Ranging from fundamental concepts to practical methodology, and including discussion of emerging technologies, this book is ideal for those requiring a single-source assessment of current practice in this intricate yet vital field.
Complex Fluids
DOWNLOAD
Author : Pierre Saramito
language : en
Publisher: Springer
Release Date : 2016-10-26
Complex Fluids written by Pierre Saramito and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-10-26 with Mathematics categories.
This book presents a comprehensive overview of the modeling of complex fluids, including many common substances, such as toothpaste, hair gel, mayonnaise, liquid foam, cement and blood, which cannot be described by Navier-Stokes equations. It also offers an up-to-date mathematical and numerical analysis of the corresponding equations, as well as several practical numerical algorithms and software solutions for the approximation of the solutions. It discusses industrial (molten plastics, forming process), geophysical (mud flows, volcanic lava, glaciers and snow avalanches), and biological (blood flows, tissues) modeling applications. This book is a valuable resource for undergraduate students and researchers in applied mathematics, mechanical engineering and physics.
Complex Fluids In Biological Systems
DOWNLOAD
Author : Saverio E. Spagnolie
language : en
Publisher: Springer
Release Date : 2014-11-27
Complex Fluids In Biological Systems written by Saverio E. Spagnolie and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-11-27 with Science categories.
This book serves as an introduction to the continuum mechanics and mathematical modeling of complex fluids in living systems. The form and function of living systems are intimately tied to the nature of surrounding fluid environments, which commonly exhibit nonlinear and history dependent responses to forces and displacements. With ever-increasing capabilities in the visualization and manipulation of biological systems, research on the fundamental phenomena, models, measurements, and analysis of complex fluids has taken a number of exciting directions. In this book, many of the world’s foremost experts explore key topics such as: Macro- and micro-rheological techniques for measuring the material properties of complex biofluids and the subtleties of data interpretation Experimental observations and rheology of complex biological materials, including mucus, cell membranes, the cytoskeleton, and blood The motility of microorganisms in complex fluids and the dynamics of active suspensions Challenges and solutions in the numerical simulation of biologically relevant complex fluid flows This volume will be accessible to advanced undergraduate and beginning graduate students in engineering, mathematics, biology, and the physical sciences, but will appeal to anyone interested in the intricate and beautiful nature of complex fluids in the context of living systems.
Microhydrodynamics And Complex Fluids
DOWNLOAD
Author : Dominique Barthes-Biesel
language : en
Publisher: CRC Press
Release Date : 2012-06-04
Microhydrodynamics And Complex Fluids written by Dominique Barthes-Biesel and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-06-04 with Science categories.
Drawing on the author's lectures on fluid mechanics modeling, this text takes a rigorous approach to the topic while maintaining a clear, easy-to-understand style. It deals with the main physical phenomena that occur in slow, inertialess viscous flows commonly encountered in various industrial, biophysical, and natural processes. Suitable for students in chemical or mechanical engineering, bioengineering, and physics, the book discusses a wide variety of topics, including confined flows, complex fluids, and rheology. Each situation is illustrated with examples and multi-part problems that stress analytical solutions and the physical interpretation of the mathematical results.
Lattice Boltzmann Modeling Of Complex Flows For Engineering Applications
DOWNLOAD
Author : Andrea Montessori
language : en
Publisher: Morgan & Claypool Publishers
Release Date : 2018-02-20
Lattice Boltzmann Modeling Of Complex Flows For Engineering Applications written by Andrea Montessori and has been published by Morgan & Claypool Publishers this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-02-20 with Science categories.
Nature continuously presents a huge number of complex and multi-scale phenomena, which in many cases, involve the presence of one or more fluids flowing, merging and evolving around us. Since its appearance on the surface of Earth, Mankind has tried to exploit and tame fluids for their purposes, probably starting with Hero's machinery to open the doors of the Temple of Serapis in Alexandria to arrive to modern propulsion systems and actuators. Today we know that fluid mechanics lies at the basis of countless scientific and technical applications from the smallest physical scales (nanofluidics, bacterial motility, and diffusive flows in porous media), to the largest (from energy production in power plants to oceanography and meteorology). It is essential to deepen the understanding of fluid behaviour across scales for the progress of Mankind and for a more sustainable and efficient future. Since the very first years of the Third Millennium, the Lattice Boltzmann Method (LBM) has seen an exponential growth of applications, especially in the fields connected with the simulation of complex and soft matter flows. LBM, in fact, has shown a remarkable versatility in different fields of applications from nanoactive materials, free surface flows, and multiphase and reactive flows to the simulation of the processes inside engines and fluid machinery. LBM is based on an optimized formulation of Boltzmann's Kinetic Equation, which allows for the simulation of fluid particles, or rather quasi-particles, from a mesoscopic point of view thus allowing the inclusion of more fundamental physical interactions in respect to the standard schemes adopted with Navier-Stokes solvers, based on the continuum assumption. In this book, the authors present the most recent advances of the application of the LBM to complex flow phenomena of scientific and technical interest with particular focus on the multi-scale modeling of heterogeneous catalysis within nano-porous media and multiphase, multicomponent flows.
Ocular Fluid Dynamics
DOWNLOAD
Author : Giovanna Guidoboni
language : en
Publisher: Springer Nature
Release Date : 2019-11-25
Ocular Fluid Dynamics written by Giovanna Guidoboni and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-11-25 with Mathematics categories.
The chapters in this contributed volume showcase current theoretical approaches in the modeling of ocular fluid dynamics in health and disease. By including chapters written by experts from a variety of fields, this volume will help foster a genuinely collaborative spirit between clinical and research scientists. It vividly illustrates the advantages of clinical and experimental methods, data-driven modeling, and physically-based modeling, while also detailing the limitations of each approach. Blood, aqueous humor, vitreous humor, tear film, and cerebrospinal fluid each have a section dedicated to their anatomy and physiology, pathological conditions, imaging techniques, and mathematical modeling. Because each fluid receives a thorough analysis from experts in their respective fields, this volume stands out among the existing ophthalmology literature. Ocular Fluid Dynamics is ideal for current and future graduate students in applied mathematics and ophthalmology who wish to explore the field by investigating open questions, experimental technologies, and mathematical models. It will also be a valuable resource for researchers in mathematics, engineering, physics, computer science, chemistry, ophthalmology, and more.
Modeling Of Soft Matter
DOWNLOAD
Author : Maria-Carme T. Calderer
language : en
Publisher: Springer Science & Business Media
Release Date : 2008-08-26
Modeling Of Soft Matter written by Maria-Carme T. Calderer and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-08-26 with Mathematics categories.
This IMA Volume in Mathematics and its Applications MODELING OF SOFT MATTER contains papers presented at a very successful workshop with the same ti tle. The event, which was held on September 27-October 1, 2004, was an integral part of the 2004-2005 IMA Thematic Year on "Mathematics of Ma terials and Macromolecules: Multiple Scales, Disorder, and Singularities. " We would like to thank Maria-Carme T. Calderer (School of Mathematics, University of Minnesota) and Eugene M. Terentjev (Cavendish Laboratory, University of Cambridge) for their superb role as workshop organizers and editors of the proceedings. We take this opportunity to thank the National Science Foundation for its support of the IMA. Series Editors Douglas N. Arnold, Director of the IMA Arnd Scheel, Deputy Director of the IMA PREFACE The physics of soft matter in particular, focusing on such materials as complex fluids, liquid crystals, elastomers, soft ferroelectrics, foams, gels and particulate systems is an area of intense interest and contemporary study. Soft matter plays a role in a wide variety of important processes and application, as well as in living systems. For example, gel swelling is an essential part of many biological processes such as motility mecha nisms in bacteria and the transport and absorption of drugs. Ferroelectrics, liquid crystals, and elastomers are being used to design ever faster switch ing devices. Experiments of the last decade have provided a great deal of detailed information on structures and properties of soft matter.
Fluids Under Pressure
DOWNLOAD
Author : Tomáš Bodnár
language : en
Publisher: Birkhäuser
Release Date : 2020-05-01
Fluids Under Pressure written by Tomáš Bodnár and has been published by Birkhäuser this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-05-01 with Mathematics categories.
This contributed volume is based on talks given at the August 2016 summer school “Fluids Under Pressure,” held in Prague as part of the “Prague-Sum” series. Written by experts in their respective fields, chapters explore the complex role that pressure plays in physics, mathematical modeling, and fluid flow analysis. Specific topics covered include: Oceanic and atmospheric dynamics Incompressible flows Viscous compressible flows Well-posedness of the Navier-Stokes equations Weak solutions to the Navier-Stokes equations Fluids Under Pressure will be a valuable resource for graduate students and researchers studying fluid flow dynamics.
Drop Bubble And Particle Dynamics In Complex Fluids
DOWNLOAD
Author : Pengtao Yue
language : en
Publisher: MDPI
Release Date : 2020-03-19
Drop Bubble And Particle Dynamics In Complex Fluids written by Pengtao Yue and has been published by MDPI this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-03-19 with Technology & Engineering categories.
The presence of drops, bubbles, and particles affects the behavior and response of complex multiphase fluids. In many applications, these complex fluids have more than one non-Newtonian component, e.g., polymer melts, liquid crystals, and blood plasma. In fact, most fluids exhibit non-Newtonian behaviors, such as yield stress, viscoelastity, viscoplasticity, shear thinning, or shear thickening, under certain flow conditions. Even in the complex fluids composed of Newtonian components, the coupling between different components and the evolution of internal boundaries often lead to a complex rheology. Thus the dynamics of drops, bubbles, and particles in both Newtonian fluids and non-Newtonian fluids are crucial to the understanding of the macroscopic behavior of complex fluids. This Special Issue aims to gather a wide variety of papers that focus on drop, bubble and particle dynamics in complex fluids. Potential topics include, but are not limited to, drop deformation, rising drops, pair-wise drop interactions, drop migration in channel flows, and the interaction of particles with flow systems such as pastes and slurries, glasses, suspensions, and emulsions. We emphasize numerical simulations, but also welcome experimental and theoretical contributions.