Mathematics Of Surfaces Xii

DOWNLOAD
Download Mathematics Of Surfaces Xii PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Mathematics Of Surfaces Xii book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Mathematics Of Surfaces Xii
DOWNLOAD
Author : Ralph Martin
language : en
Publisher: Springer Science & Business Media
Release Date : 2007-08-22
Mathematics Of Surfaces Xii written by Ralph Martin and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-08-22 with Computers categories.
This book constitutes the refereed proceedings of the 12th IMA International Conference on the Mathematics of Surfaces, held in Sheffield, UK in September 2007. The 22 revised full papers presented together with 8 invited papers were carefully reviewed and selected from numerous submissions. Among the topics addressed is the applicability of various aspects of mathematics to engineering and computer science, especially in domains such as computer aided design, computer vision, and computer graphics. The papers cover a range of ideas from underlying theoretical tools to industrial uses of surfaces. Research is reported on theoretical aspects of surfaces including topology, parameterization, differential geometry, and conformal geometry, and also more practical topics such as geometric tolerances, computing shape from shading, and medial axes for industrial applications. Other specific areas of interest include subdivision schemes, solutions of differential equations on surfaces, knot insertion, surface segmentation, surface deformation, and surface fitting.
Differential Geometry Of Curves And Surfaces
DOWNLOAD
Author : Shoshichi Kobayashi
language : en
Publisher: Springer Nature
Release Date : 2019-11-13
Differential Geometry Of Curves And Surfaces written by Shoshichi Kobayashi and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-11-13 with Mathematics categories.
This book is a posthumous publication of a classic by Prof. Shoshichi Kobayashi, who taught at U.C. Berkeley for 50 years, recently translated by Eriko Shinozaki Nagumo and Makiko Sumi Tanaka. There are five chapters: 1. Plane Curves and Space Curves; 2. Local Theory of Surfaces in Space; 3. Geometry of Surfaces; 4. Gauss–Bonnet Theorem; and 5. Minimal Surfaces. Chapter 1 discusses local and global properties of planar curves and curves in space. Chapter 2 deals with local properties of surfaces in 3-dimensional Euclidean space. Two types of curvatures — the Gaussian curvature K and the mean curvature H —are introduced. The method of the moving frames, a standard technique in differential geometry, is introduced in the context of a surface in 3-dimensional Euclidean space. In Chapter 3, the Riemannian metric on a surface is introduced and properties determined only by the first fundamental form are discussed. The concept of a geodesic introduced in Chapter 2 is extensively discussed, and several examples of geodesics are presented with illustrations. Chapter 4 starts with a simple and elegant proof of Stokes’ theorem for a domain. Then the Gauss–Bonnet theorem, the major topic of this book, is discussed at great length. The theorem is a most beautiful and deep result in differential geometry. It yields a relation between the integral of the Gaussian curvature over a given oriented closed surface S and the topology of S in terms of its Euler number χ(S). Here again, many illustrations are provided to facilitate the reader’s understanding. Chapter 5, Minimal Surfaces, requires some elementary knowledge of complex analysis. However, the author retained the introductory nature of this book and focused on detailed explanations of the examples of minimal surfaces given in Chapter 2.
Minimal Surfaces And Functions Of Bounded Variation
DOWNLOAD
Author : Giusti
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-03-14
Minimal Surfaces And Functions Of Bounded Variation written by Giusti and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-03-14 with Mathematics categories.
The problem of finding minimal surfaces, i. e. of finding the surface of least area among those bounded by a given curve, was one of the first considered after the foundation of the calculus of variations, and is one which received a satis factory solution only in recent years. Called the problem of Plateau, after the blind physicist who did beautiful experiments with soap films and bubbles, it has resisted the efforts of many mathematicians for more than a century. It was only in the thirties that a solution was given to the problem of Plateau in 3-dimensional Euclidean space, with the papers of Douglas [DJ] and Rado [R T1, 2]. The methods of Douglas and Rado were developed and extended in 3-dimensions by several authors, but none of the results was shown to hold even for minimal hypersurfaces in higher dimension, let alone surfaces of higher dimension and codimension. It was not until thirty years later that the problem of Plateau was successfully attacked in its full generality, by several authors using measure-theoretic methods; in particular see De Giorgi [DG1, 2, 4, 5], Reifenberg [RE], Federer and Fleming [FF] and Almgren [AF1, 2]. Federer and Fleming defined a k-dimensional surface in IR" as a k-current, i. e. a continuous linear functional on k-forms. Their method is treated in full detail in the splendid book of Federer [FH 1].
Compact Complex Surfaces
DOWNLOAD
Author : W. Barth
language : en
Publisher: Springer
Release Date : 2015-05-22
Compact Complex Surfaces written by W. Barth and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-05-22 with Mathematics categories.
In the 19 years which passed since the first edition was published, several important developments have taken place in the theory of surfaces. The most sensational one concerns the differentiable structure of surfaces. Twenty years ago very little was known about differentiable structures on 4-manifolds, but in the meantime Donaldson on the one hand and Seiberg and Witten on the other hand, have found, inspired by gauge theory, totally new invariants. Strikingly, together with the theory explained in this book these invariants yield a wealth of new results about the differentiable structure of algebraic surfaces. Other developments include the systematic use of nef-divisors (in ac cordance with the progress made in the classification of higher dimensional algebraic varieties), a better understanding of Kahler structures on surfaces, and Reider's new approach to adjoint mappings. All these developments have been incorporated in the present edition, though the Donaldson and Seiberg-Witten theory only by way of examples. Of course we use the opportunity to correct some minor mistakes, which we ether have discovered ourselves or which were communicated to us by careful readers to whom we are much obliged.
Mathematics Of Surfaces Xii
DOWNLOAD
Author : Ralph Martin
language : en
Publisher: Springer
Release Date : 2007-08-28
Mathematics Of Surfaces Xii written by Ralph Martin and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-08-28 with Computers categories.
This book constitutes the refereed proceedings of the 12th IMA International Conference on the Mathematics of Surfaces, held in Sheffield, UK in September 2007. The papers cover a range of ideas from underlying theoretical tools to industrial uses of surfaces. Research is reported on theoretical aspects of surfaces as well as more practical topics.
The Collected Mathematical Papers Of Arthur Cayley
DOWNLOAD
Author : Arthur Cayley
language : en
Publisher:
Release Date : 1896
The Collected Mathematical Papers Of Arthur Cayley written by Arthur Cayley and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 1896 with Mathematics categories.
Modeling With Ambient B Splines
DOWNLOAD
Author : Nicole Lehmann
language : en
Publisher: Logos Verlag Berlin GmbH
Release Date : 2013
Modeling With Ambient B Splines written by Nicole Lehmann and has been published by Logos Verlag Berlin GmbH this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013 with Computers categories.
The present thesis introduces a new approach for the generation of CK-approximants of functions defined on closed submanifolds for arbitrary k ∈ N. In case a function on a surface resembles the three coordinates of a topologically equivalent surface in R3, we even obtain Ck-approximants of closed surfaces of arbitrary topology. The key idea of our method is a constant extension of the target function into the submanifold's ambient space. In case the reference submanifolds are embedded and Ck, the usage of standard tensor product B-splines for the approximation of the extended function is straightforward. We obtain a Ck-approximation of the target function by restricting the approximant to the reference submanifold. We illustrate our method by an easy example in R2 and verify its practicality by application-oriented examples in R3. The first treats the approximation of the geoid, an important reference magnitude within geodesy and geophysics. The second and third example treat the approximation of geometric models. The usage of B-splines not only guarantees full approximation power but also allows a canonical access to adaptive refinement strategies. We elaborate on two hierarchical techniques and successfully apply them to the introduced examples. Concerning the modeling of surfaces by the new approach, we derive numerically robust formulas for the determination of normal vectors and curvature information of a target surface which only need the spline approximant as well as the normal vectors and curvature information of the reference surface.
The Collected Mathematical Papers
DOWNLOAD
Author : Henry John Stephen Smith
language : en
Publisher: CUP Archive
Release Date : 1965
The Collected Mathematical Papers written by Henry John Stephen Smith and has been published by CUP Archive this book supported file pdf, txt, epub, kindle and other format this book has been release on 1965 with categories.
Proceedings Of The London Mathematical Society
DOWNLOAD
Author : London Mathematical Society
language : en
Publisher:
Release Date : 1889
Proceedings Of The London Mathematical Society written by London Mathematical Society and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 1889 with Electronic journals categories.
"Papers presented to J.E. Littlewood on his 80th birthday" issued as 3d ser., v. 14 A, 1965.
The Collected Mathematical Papers Of Arthur Cayley
DOWNLOAD
Author : Arthur Cayley
language : en
Publisher:
Release Date : 1963
The Collected Mathematical Papers Of Arthur Cayley written by Arthur Cayley and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 1963 with Mathematics categories.