[PDF] Matlab Simulink For Digital Communication - eBooks Review

Matlab Simulink For Digital Communication


Matlab Simulink For Digital Communication
DOWNLOAD

Download Matlab Simulink For Digital Communication PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Matlab Simulink For Digital Communication book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page





Modeling Of Digital Communication Systems Using Simulink


Modeling Of Digital Communication Systems Using Simulink
DOWNLOAD
Author : Arthur A. Giordano
language : en
Publisher: John Wiley & Sons
Release Date : 2015-03-31

Modeling Of Digital Communication Systems Using Simulink written by Arthur A. Giordano and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-03-31 with Technology & Engineering categories.


A comprehensive and detailed treatment of the program SIMULINK® that focuses on SIMULINK® for simulations in Digital and Wireless Communications Modeling of Digital Communication Systems Using SIMULINK® introduces the reader to SIMULINK®, an extension of the widely-used MATLAB modeling tool, and the use of SIMULINK® in modeling and simulating digital communication systems, including wireless communication systems. Readers will learn to model a wide selection of digital communications techniques and evaluate their performance for many important channel conditions. Modeling of Digital Communication Systems Using SIMULINK® is organized in two parts. The first addresses Simulink® models of digital communications systems using various modulation, coding, channel conditions and receiver processing techniques. The second part provides a collection of examples, including speech coding, interference cancellation, spread spectrum, adaptive signal processing, Kalman filtering and modulation and coding techniques currently implemented in mobile wireless systems. Covers case examples, progressing from basic to complex Provides applications for mobile communications, satellite communications, and fixed wireless systems that reveal the power of SIMULINK modeling Includes access to useable SIMULINK® simulations online All models in the text have been updated to R2018a; only problem sets require updating to the latest release by the user Covering both the use of SIMULINK® in digital communications and the complex aspects of wireless communication systems, Modeling of Digital Communication Systems UsingSIMULINK® is a great resource for both practicing engineers and students with MATLAB experience.



Matlab Simulink For Digital Communication


Matlab Simulink For Digital Communication
DOWNLOAD
Author :
language : en
Publisher:
Release Date : 2009

Matlab Simulink For Digital Communication written by and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009 with Digital communications categories.




Matlab Simulink For Digital Communication


Matlab Simulink For Digital Communication
DOWNLOAD
Author : Won Y. Yang
language : en
Publisher: Won Y. Yang
Release Date : 2018-03-02

Matlab Simulink For Digital Communication written by Won Y. Yang and has been published by Won Y. Yang this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-03-02 with Antiques & Collectibles categories.


Chapter 1: Fourier Analysis 1 1.1 CONTINUOUS-TIME FOURIER SERIES (CTFS)................................................................... 2 1.2 PROPERTIES OF CTFS............................................................................................................... 6 1.2.1 Time-Shifting Property....................................................................................................... 6 1.2.2 Frequency-Shifting Property ............................................................................................ 6 1.2.3 Modulation Property......................................................................................................... 6 1.3 CONTINUOUS-TIME FOURIER TRANSFORM (CTFT)....................................................... 7 1.4 PROPERTIES OF CTFT............................................................................................................. 13 1.4.1 Linearity............................................................................................................................ 13 1.4.2 Conjugate Symmetry........................................................................................................ 13 1.4.3 Real Translation (Time Shifting) and Complex Translation (Frequency Shifting)..... 14 1.4.4 Real Convolution and Correlation................................................................................... 14 1.4.5 Complex Convolution – Modulation/Windowing.......................................................... 14 1.4.6 Duality............................................................................................................................... 17 1.4.7 Parseval Relation - Power Theorem................................................................................ 18 1.5 DISCRETE-TIME FOURIER TRANSFORM (DTFT)............................................................ 18 1.6 DISCRETE-TIME FOURIER SERIES - DFS/DFT.................................................................. 19 1.7 SAMPLING THEOREM............................................................................................................. 21 1.7.1 Relationship between CTFS and DFS ........................................................................... 21 1.7.2 Relationship between CTFT and DTFT.......................................................................... 27 1.7.3 Sampling Theorem............................................................................................................ 27 1.8 POWER, ENERGY, AND CORRELATION............................................................................ 29 1.9 LOWPASS EQUIVALENT OF BANDPASS SIGNALS........................................................ 30 Chapter 2: PROBABILITY AND RANDOM PROCESSES 39 2.1 PROBABILITY........................................................................................................................... 39 2.1.1 Definition of Probability................................................................................................. 39 2.1.2 Joint Probability and Conditional Probability............................................................... 40 2.1.3 Probability Distribution/Density Function..................................................................... 41 2.1.4 Joint Probability Density Function................................................................................. 41 2.1.5 Condtional Probability Density Function...................................................................... 41 2.1.6 Independence................................................................................................................... 41 2.1.7 Function of a Random Variable...................................................................................... 42 2.1.8 Expectation, Covariance, and Correlation..................................................................... 43 2.1.9 Conditional Expectation.................................................................................................. 47 2.1.10 Central Limit Theorem - Normal Convergence Theorem............................................. 47 2.1.11 Random Processes............................................................................................................ 49 2.1.12 Stationary Processes and Ergodic Processes.................................................................. 51 2.1.13 Power Spectral Density (PSD)......................................................................................... 53 2.1.14 White Noise and Colored Noise...................................................................................... 53 2.2 LINEAR FILTERING OF A RANDOM PROCESS................................................................ 57 2.3 PSD OF A RANDOM PROCESS.............................................................................................. 58 2.4 FADING EFFECT OF A MULTIPATH CHANNEL............................................................... 58 Chapter 3: ANALOG MODULATION 71 3.1 AMPLITUDE MODULATION (AM)....................................................................................... 71 3.1.1 DSB (Double Sideband)-AM (Amplitude Modulation)............................................... 71 3.1.2 Conventional AM (Amplitude Modulation)................................................................ 75 3.1.3 SSB (Single Sideband)-AM(Amplitude Modulation)................................................. 78 3.2 ANGLE MODULATION (AGM) - FREQUENCY/PHASE MODULATIONS .................. 82 Chapter 4: ANALOG-TO-DIGITAL CONVERSION 87 4.1 QUANTIZATION........................................................................................................................ 87 4.1.1 Uniform Quantization..................................................................................................... 88 4.1.2 Non-uniform Quantization.............................................................................................. 89 4.1.3 Non-uniform Quantization Considering the Absolute Errors .................................... 91 4.2 Pulse Code Modulation (PCM)................................................................................................... 95 4.3 Differential Pulse Code Modulation (DPCM)........................................................................... 97 4.4 Delta Modulation (DM)............................................................................................................. 100 Chapter 5: BASEBAND TRANSMISSION 107 5.1 RECEIVER (RCVR) and SNR ............................................................................................... 107 5.1.1 Receiver of RC Filter Type.......................................................................................... 109 5.1.2 Receiver of Matched Filter Type................................................................................. 110 5.1.3 Signal Correlator........................................................................................................... 112 5.2 PROBABILITY OF ERROR WITH SIGNALING................................................................ 114 5.2.1 Antipodal (Bipolar) Signaling...................................................................................... 114 5.2.2 On-Off Keying (OOK)/Unipolar Signaling................................................................. 118 5.2.3 Orthogonal Signaling.................................................................................................... 119 5.2.4 Signal Constellation Diagram...................................................................................... 121 5.2.5 Simulation of Binary Communication......................................................................... 123 5.2.6 Multi-Level(amplitude) PAM Signaling..................................................................... 127 5.2.7 Multi-Dimensional Signaling....................................................................................... 129 5.2.8 Bi-Orthogonal Signaling............................................................................................... 133 Chapter 6: BANDLIMITED CHANNEL AND EQUALIZER 139 6.1 BANDLIMITED CHANNEL................................................................................................... 139 6.1.1 Nyquist Bandwidth........................................................................................................ 139 6.1.2 Raised-Cosine Frequency Response............................................................................ 141 6.1.3 Partial Respone Signaling - Duobinary Signaling...................................................... 143 6.2 EQUALIZER............................................................................................................................. 148 6.2.1 Zero-Forcing Equalizer (ZFE)...................................................................................... 148 6.2.2 MMSE Equalizer (MMSEE)........................................................................................ 151 6.2.3 Adaptive Equalizer (ADE)........................................................................................... 154 6.2.4 Decision Feedback Equalizer (DFE)............................................................................ 155 Chapter 7: BANDPASS TRANSMISSION 169 7.1 AMPLITUDE SHIFT KEYING (ASK)................................................................................... 169 7.2 FREQUENCY SHIFT KEYING (FSK)................................................................................... 178 7.3 PHASE SHIFT KEYING (PSK)............................................................................................... 187 7.4 DIFFERENTIAL PHASE SHIFT KEYING (DPSK)............................................................. 190 7.5 QUADRATURE AMPLITUDE MODULATION (QAM).................................................... 195 7.6 COMPARISON OF VARIOUS SIGNALINGS...................................................................... 200 Chapter 8: CARRIER RECOVERY AND SYMBOL SYNCHRONIZATION 227 8.1 INTRODUCTION..................................................................................................................... 227 8.2 PLL (PHSE-LOCKED LOOP)................................................................................................. 228 8.3 ESTIMATION OF CARRIER PHASE USING PLL............................................................. 233 8.4 CARRIER PHASE RECOVERY............................................................................................. 235 8.4.1 Carrier Phase Recovery Using a Squaring Loop for BPSK Signals.......................... 235 8.4.2 Carrier Phase Recovery Using Costas Loop for PSK Signals.................................... 237 8.4.3 Carrier Phase Recovery for QAM Signals.................................................................. 240 8.5 SYMBOL SYNCHRONIZATION (TIMING RECOVERY)................................................ 243 8.5.1 Early-Late Gate Timing Recovery for BPSK Signals................................................ 243 8.5.2 NDA-ELD Synchronizer for PSK Signals.................................................................. 246 Chapter 9: INFORMATION AND CODING 257 9.1 MEASURE OF INFORMATION - ENTROPY...................................................................... 257 9.2 SOURCE CODING................................................................................................................... 259 9.2.1 Huffman Coding............................................................................................................ 259 9.2.2 Lempel-Zip-Welch Coding........................................................................................... 262 9.2.3 Source Coding vs. Channel Coding............................................................................. 265 9.3 CHANNEL MODEL AND CHANNEL CAPACITY............................................................ 266 9.4 CHANNEL CODING................................................................................................................ 271 9.4.1 Waveform Coding......................................................................................................... 272 9.4.2 Linear Block Coding..................................................................................................... 273 9.4.3 Cyclic Coding................................................................................................................ 282 9.4.4 Convolutional Coding and Viterbi Decoding.............................................................. 287 9.4.5 Trellis-Coded Modulation (TCM)................................................................................ 296 9.4.6 Turbo Coding................................................................................................................. 300 9.4.7 Low-Density Parity-Check (LDPC) Coding............................................................... 311 9.4.8 Differential Space-Time Block Coding (DSTBC)...................................................... 316 9.5 CODING GAIN ....................................................................................................................... 319 Chapter 10: SPREAD-SPECTRUM SYSTEM 339 10.1 PN (Pseudo Noise) Sequence..................................................................................................... 339 10.2 DS-SS (Direct Sequence Spread Spectrum)............................................................................. 347 10.3 FH-SS (Frequency Hopping Spread Spectrum)........................................................................ 352 Chapter 11: OFDM SYSTEM 359 11.1 OVERVIEW OF OFDM......................................................................................................... 359 11.2 FREQUENCY BAND AND BANDWIDTH EFFICIENCY OF OFDM............................ 363 11.3 CARRIER RECOVERY AND SYMBOL SYNCHRONIZATION.......................................... 364 11.4 CHANNEL ESTIMATION AND EQUALIZATION.......................................................... 381 11.5 INTERLEAVING AND DEINTERLEAVING..................................................................... 384 11.6 PUNCTURING AND DEPUNCTURING............................................................................ 386 11.7 IEEE STANDARD 802.11A - 1999....................................................................................... 388



Digital Communication Systems Using Matlab And Simulink


Digital Communication Systems Using Matlab And Simulink
DOWNLOAD
Author : Dennis Silage
language : en
Publisher: Bookstand Pub
Release Date : 2009

Digital Communication Systems Using Matlab And Simulink written by Dennis Silage and has been published by Bookstand Pub this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009 with Computers categories.


Digital Communication using MATLAB and Simulink is intended for a broad audience. For the student taking a traditional course, the text provides simulations of the MATLAB and Simulink systems, and the opportunity to go beyond the lecture or laboratory and develop investigations and projects. For the professional, the text facilitates an expansive review of and experience with the tenets of digital communication systems.



Analog And Digital Communication Lab


Analog And Digital Communication Lab
DOWNLOAD
Author : Jai Agrawal
language : en
Publisher:
Release Date : 2015-04-09

Analog And Digital Communication Lab written by Jai Agrawal and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-04-09 with categories.


This lab book is intended for the Junior/senior engineering/Technology students. This book should accompany regular textbook in analog and digital communication. The lab exercises use MATLAB/SIMULINK, Arduino Uno and employs hardware circuits.



An Introduction To Digital Communications


An Introduction To Digital Communications
DOWNLOAD
Author : Jack Kurzweil
language : en
Publisher: John Wiley & Sons
Release Date : 2000

An Introduction To Digital Communications written by Jack Kurzweil and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2000 with Technology & Engineering categories.


The only book available that integrates a realistic design approach with a theoretical approach! This outstanding new book focuses on the central theoretical and practical issues involved in modem design. The first half deals with the basic issues of base-band and passband data transmission and contains descriptions of applications to specific digital transmission systems. The second half specifically addresses design issues including timing and carrier recovery, channel characterization, adaptive equalization, and trellis coding. The author uses simulation programs in Matlab and C to help readers: * Determine the power spectral density of complex data encoding rules * Simulate the performance of passband data transmission techniques * Design and assess the performance of carrier recovery systems * Develop time domain models for a variety of channels * Design and assess the performance of adaptive equalizers * Use existing programs as the framework for creating simulation modules



Problem Based Learning In Communication Systems Using Matlab And Simulink


Problem Based Learning In Communication Systems Using Matlab And Simulink
DOWNLOAD
Author : Kwonhue Choi
language : en
Publisher: John Wiley & Sons
Release Date : 2016-02-29

Problem Based Learning In Communication Systems Using Matlab And Simulink written by Kwonhue Choi and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-02-29 with Technology & Engineering categories.


Designed to help teach and understand communication systems using a classroom-tested, active learning approach. Discusses communication concepts and algorithms, which are explained using simulation projects, accompanied by MATLAB and Simulink Provides step-by-step code exercises and instructions to implement execution sequences Includes a companion website that has MATLAB and Simulink model samples and templates (password: matlab)



Introduction To Digital Signal Processing Using Matlab With Application To Digital Communications


Introduction To Digital Signal Processing Using Matlab With Application To Digital Communications
DOWNLOAD
Author : K.S. Thyagarajan
language : en
Publisher: Springer
Release Date : 2018-05-28

Introduction To Digital Signal Processing Using Matlab With Application To Digital Communications written by K.S. Thyagarajan and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-05-28 with Technology & Engineering categories.


This textbook provides engineering students with instruction on processing signals encountered in speech, music, and wireless communications using software or hardware by employing basic mathematical methods. The book starts with an overview of signal processing, introducing readers to the field. It goes on to give instruction in converting continuous time signals into digital signals and discusses various methods to process the digital signals, such as filtering. The author uses MATLAB throughout as a user-friendly software tool to perform various digital signal processing algorithms and to simulate real-time systems. Readers learn how to convert analog signals into digital signals; how to process these signals using software or hardware; and how to write algorithms to perform useful operations on the acquired signals such as filtering, detecting digitally modulated signals, correcting channel distortions, etc. Students are also shown how to convert MATLAB codes into firmware codes. Further, students will be able to apply the basic digital signal processing techniques in their workplace. The book is based on the author's popular online course at University of California, San Diego.



Lab Primer Through Matlab


Lab Primer Through Matlab
DOWNLOAD
Author : NAVAS, K. A.
language : en
Publisher: PHI Learning Pvt. Ltd.
Release Date : 2014-02-19

Lab Primer Through Matlab written by NAVAS, K. A. and has been published by PHI Learning Pvt. Ltd. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-02-19 with Technology & Engineering categories.


This systematically designed laboratory manual elucidates a number of techniques which help the students carry out various experiments in the field of digital signal processing, digital image processing, digital signal processor and digital communication through MATLAB® in a single volume. A step-wise discussion of the programming procedure using MATLAB® has been carried out in this book. The numerous programming examples for each digital signal processing lab, image processing lab, signal processor lab and digital communication lab have also been included. The book begins with an introductory chapter on MATLAB®, which will be very useful for a beginner. The concepts are explained with the aid of screenshots. Then it moves on to discuss the fundamental aspects in digital signal processing through MATLAB®, with a special emphasis given to the design of digital filters (FIR and IIR). Finally digital communication and image processing sections in the book help readers to understand the commonly used MATLAB® functions. At the end of this book, some basic experiments using DSP trainer kit have also been included. Audience This book is intended for the undergraduate students of electronics and communication engineering, electronics and instrumentation engineering, and instrumentation and control engineering for their laboratory courses in digital signal processing, image processing and digital communication. Key Features • Includes about 115 different experiments. • Contains several figures to reinforce the understanding of the techniques discussed. • Gives systematic way of doing experiments such as Aim, Theory, Programs, Sample inputs and outputs, Viva voce questions and Examination questions.



Communication Systems Principles Using Matlab


Communication Systems Principles Using Matlab
DOWNLOAD
Author : John W. Leis
language : en
Publisher: John Wiley & Sons
Release Date : 2018-10-16

Communication Systems Principles Using Matlab written by John W. Leis and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-10-16 with Technology & Engineering categories.


Discover the basic telecommunications systems principles in an accessible learn-by-doing format Communication Systems Principles Using MATLAB covers a variety of systems principles in telecommunications in an accessible format without the need to master a large body of theory. The text puts the focus on topics such as radio and wireless modulation, reception and transmission, wired networks and fiber optic communications. The book also explores packet networks and TCP/IP as well as digital source and channel coding, and the fundamentals of data encryption. Since MATLAB® is widely used by telecommunications engineers, it was chosen as the vehicle to demonstrate many of the basic ideas, with code examples presented in every chapter. The text addresses digital communications with coverage of packet-switched networks. Many fundamental concepts such as routing via shortest-path are introduced with simple and concrete examples. The treatment of advanced telecommunications topics extends to OFDM for wireless modulation, and public-key exchange algorithms for data encryption. Throughout the book, the author puts the emphasis on understanding rather than memorization. The text also: Includes many useful take-home skills that can be honed while studying each aspect of telecommunications Offers a coding and experimentation approach with many real-world examples provided Gives information on the underlying theory in order to better understand conceptual developments Suggests a valuable learn-by-doing approach to the topic Written for students of telecommunications engineering, Communication Systems Principles Using MATLAB® is the hands-on resource for mastering the basic concepts of telecommunications in a learn-by-doing format.