[PDF] Matlab Simulink For Digital Signal Processing - eBooks Review

Matlab Simulink For Digital Signal Processing


Matlab Simulink For Digital Signal Processing
DOWNLOAD

Download Matlab Simulink For Digital Signal Processing PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Matlab Simulink For Digital Signal Processing book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Matlab Simulink For Digital Signal Processing


Matlab Simulink For Digital Signal Processing
DOWNLOAD
Author : Won Y. Yang
language : en
Publisher: Won Y. Yang
Release Date : 2015-03-02

Matlab Simulink For Digital Signal Processing written by Won Y. Yang and has been published by Won Y. Yang this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-03-02 with Antiques & Collectibles categories.


Chapter 1: Fourier Analysis................................................................................................................... 1 1.1 CTFS, CTFT, DTFT, AND DFS/DFT....................................................................................... 1 1.2 SAMPLING THEOREM.......................................................................................................... 16 1.3 FAST FOURIER TRANSFORM (FFT)................................................................................. 19 1.3.1 Decimation-in-Time (DIT) FFT..................................................................................... 19 1.3.2 Decimation-in-Frequency (DIF) FFT............................................................................ 22 1.3.3 Computation of IDFT Using FFT Algorithm................................................................ 23 1.4 INTERPRETATION OF DFT RESULTS............................................................................. 23 1.5 EFFECTS OF SIGNAL OPERATIONS ON DFT SPECTRUM....................................... 31 1.6 SHORT-TIME FOURIER TRANSFORM - STFT.............................................................. 32 Chapter 2: System Function, Impulse Response, and Frequency Response........................ 51 2.1 THE INPUT-OUTPUT RELATIONSHIP OF A DISCRETE-TIME LTI SYSTEM..... 52 2.1.1 Convolution...................................................................................................................... 52 2.1.2 System Function and Frequency Response................................................................... 54 2.1.3 Time Response................................................................................................................. 55 2.2 COMPUTATION OF LINEAR CONVOLUTION USING DFT...................................... 55 2.3 PHYSICAL MEANING OF SYSTEM FUNCTION AND FREQUENCY RESPONSE 58 Chapter 3: Correlation and Power Spectrum................................................................ 73 3.1 CORRELATION SEQUENCE................................................................................................ 73 3.1.1 Crosscorrelation............................................................................................................... 73 3.1.2 Autocorrelation.............................................................................................................. 76 3.1.3 Matched Filter................................................................................................................ 80 3.2 POWER SPECTRAL DENSITY (PSD)................................................................................. 83 3.2.1 Periodogram PSD Estimator........................................................................................... 84 3.2.2 Correlogram PSD Estimator......................................................................................... 85 3.2.3 Physical Meaning of Periodogram............................................................................... 85 3.3 POWER SPECTRUM, FREQUENCY RESPONSE, AND COHERENCE..................... 89 3.3.1 PSD and Frequency Response........................................................................................ 90 3.3.2 PSD and Coherence....................................................................................................... 91 3.4 COMPUTATION OF CORRELATION USING DFT ...................................................... 94 Chapter 4: Digital Filter Structure................................................................................ 99 4.1 INTRODUCTION...................................................................................................................... 99 4.2 DIRECT STRUCTURE ........................................................................................................ 101 4.2.1 Cascade Form................................................................................................................ 102 4.2.2 Parallel Form............................................................................................................... 102 4.3 LATTICE STRUCTURE ..................................................................................................... 104 4.3.1 Recursive Lattice Form................................................................................................. 106 4.3.2 Nonrecursive Lattice Form........................................................................................... 112 4.4 LINEAR-PHASE FIR STRUCTURE ................................................................................ 114 4.4.1 FIR Filter with Symmetric Coefficients...................................................................... 115 4.4.2 FIR Filter with Anti-Symmetric Coefficients........................................................... 115 4.5 FREQUENCY-SAMPLING (FRS) STRUCTURE .......................................................... 118 4.5.1 Recursive FRS Form..................................................................................................... 118 4.5.2 Nonrecursive FRS Form............................................................................................. 124 4.6 FILTER STRUCTURES IN MATLAB ............................................................................. 126 4.7 SUMMARY ............................................................................................................................ 130 Chapter 5: Filter Design.............................................................................................. 137 5.1 ANALOG FILTER DESIGN................................................................................................. 137 5.2 DISCRETIZATION OF ANALOG FILTER.................................................................... 145 5.2.1 Impulse-Invariant Transformation............................................................................. 145 5.2.2 Step-Invariant Transformation - Z.O.H. (Zero-Order-Hold) Equivalent .............. 146 5.2.3 Bilinear Transformation (BLT).................................................................................. 147 5.3 DIGITAL FILTER DESIGN................................................................................................. 150 5.3.1 IIR Filter Design............................................................................................................ 151 5.3.2 FIR Filter Design......................................................................................................... 160 5.4 FDATOOL................................................................................................................................ 171 5.4.1 Importing/Exporting a Filter Design Object................................................................ 172 5.4.2 Filter Structure Conversion........................................................................................ 174 5.5 FINITE WORDLENGTH EFFECT..................................................................................... 180 5.5.1 Quantization Error......................................................................................................... 180 5.5.2 Coefficient Quantization............................................................................................. 182 5.5.3 Limit Cycle.................................................................................................................. 185 5.6 FILTER DESIGN TOOLBOX ............................................................................................ 193 Chapter 6: Spectral Estimation................................................................................... 205 6.1 CLASSICAL SPECTRAL ESTIMATION.......................................................................... 205 6.1.1 Correlogram PSD Estimator......................................................................................... 205 6.1.2 Periodogram PSD Estimator....................................................................................... 206 6.2 MODERN SPECTRAL ESTIMATION ............................................................................ 208 6.2.1 FIR Wiener Filter........................................................................................................ 208 6.2.2 Prediction Error and White Noise.............................................................................. 212 6.2.3 Levinson Algorithm.................................................................................................... 214 6.2.4 Burg Algorithm........................................................................................................... 217 6.2.5 Various Modern Spectral Estimation Methods......................................................... 219 6.3 SPTOOL .................................................................................................................................. 224 Chapter 7: DoA Estimation......................................................................................... 241 7.1 BEAMFORMING AND NULL STEERING...................................................................... 244 7.1.1 Beamforming................................................................................................................. 244 7.1.2 Null Steering................................................................................................................ 248 7.2 CONVENTIONAL METHODS FOR DOA ESTIATION................................................ 250 7.2.1 Delay-and-Sum (or Fourier) Method - Classical Beamformer.................................. 250 7.2.2 Capon's Minimum Variance Method......................................................................... 252 7.3 SUBSPACE METHODS FOR DOA ESTIATION............................................................ 253 7.3.1 MUSIC (MUltiple SIgnal Classification) Algorithm................................................. 253 7.3.2 Root-MUSIC Algorithm............................................................................................. 254 7.3.3 ESPRIT Algorithm...................................................................................................... 256 7.4 SPATIAL SMOOTHING TECHNIQUES ........................................................................ 258 Chapter 8: Kalman Filter and Wiener Filter............................................................. 267 8.1 DISCRETE-TIME KALMAN FILTER.............................................................................. 267 8.1.1 Conditional Expectation/Covariance of Jointly Gaussian Random Vectors............. 267 8.1.2 Stochastic Statistic Observer...................................................................................... 270 8.1.3 Kalman Filter for Nonstandard Cases........................................................................ 276 8.1.4 Extended Kalman Filter (EKF).................................................................................. 286 8.1.5 Unscented Kalman Filter (UKF)................................................................................ 288 8.2 DISCRETE-TIME WIENER FILTER .............................................................................. 291 Chapter 9: Adaptive Filter.......................................................................................... 301 9.1 OPTIMAL FIR FILTER........................................................................................................ 301 9.1.1 Least Squares Method................................................................................................... 302 9.1.2 Least Mean Squares Method...................................................................................... 304 9.2 ADAPTIVE FILTER ............................................................................................................ 306 9.2.1 Gradient Search Approach - LMS Method.................................................................. 306 9.2.2 Modified Versions of LMS Method........................................................................... 310 9.3 MORE EXAMPLES OF ADAPTIVE FILTER ............................................................... 316 9.4 RECURSIVE LEAST-SQUARES ESTIMATION .......................................................... 320 Chapter 10: Multi-Rate Signal Processing and Wavelet Transform............................ 329 10.1 MULTIRATE FILTER........................................................................................................ 329 10.1.1 Decimation and Interpolation..................................................................................... 330 10.1.2 Sampling Rate Conversion....................................................................................... 334 10.1.3 Decimator/Interpolator Polyphase Filters................................................................ 335 10.1.4 Multistage Filters........................................................................................................ 339 10.1.5 Nyquist (M) Filters and Half-Band Filters.............................................................. 348 10.2 TWO-CHANNEL FILTER BANK ................................................................................... 351 10.2.1 Two-Channel SBC (SubBand Coding) Filter Bank.................................................. 351 10.2.2 Standard QMF (Quadrature Mirror Filter) Bank.................................................... 352 10.2.3 PR (Perfect Reconstruction) Conditions.................................................................. 353 10.2.4 CQF (Conjugate Quadrature Filter) Bank................................................................. 354 10.3 M-CHANNEL FILTER BANK ......................................................................................... 358 10.3.1 Complex-Modulated Filter Bank (DFT Filter Bank)................................................ 359 10.3.2 Cosine-Modulated Filter Bank................................................................................. 363 10.3.3 Dyadic (Octave) Filter Bank.................................................................................... 366 10.4 WAVELET TRANSFORM ............................................................................................... 369 10.4.1 Generalized Signal Transform................................................................................... 369 10.4.2 Multi-Resolution Signal Analysis............................................................................ 371 10.4.3 Filter Bank and Wavelet........................................................................................... 374 10.4.4 Properties of Wavelets and Scaling Functions.......................................................... 378 10.4.5 Wavelet, Scaling Function, and DWT Filters......................................................... 379 10.4.6 Wavemenu Toolbox and Examples of DWT.......................................................... 382 Chapter 11: Two-Dimensional Filtering...................................................................... 401 11.1 DIGITAL IMAGE TRANSFORM..................................................................................... 401 11.1.1 2-D DFT (Discrete Fourier Transform)..................................................................... 401 11.1.2 2-D DCT (Discrete Cosine Transform)................................................................... 402 11.1.3 2-D DWT (Discrete Wavelet Transform)................................................................ 404 11.2 DIGITAL IMAGE FILTERING ....................................................................................... 411 11.2.1 2-D Filtering................................................................................................................ 411 11.2.2 2-D Correlation......................................................................................................... 412 11.2.3 2-D Wiener Filter...................................................................................................... 412 11.2.4 Smoothing Using LPF or Median Filter.................................................................... 413 11.2.5 Sharpening Using HPF or Gradient/Laplacian-Based Filter.................................. 414



Introduction To Digital Signal Processing Using Matlab With Application To Digital Communications


Introduction To Digital Signal Processing Using Matlab With Application To Digital Communications
DOWNLOAD
Author : K.S. Thyagarajan
language : en
Publisher: Springer
Release Date : 2018-05-28

Introduction To Digital Signal Processing Using Matlab With Application To Digital Communications written by K.S. Thyagarajan and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-05-28 with Technology & Engineering categories.


This textbook provides engineering students with instruction on processing signals encountered in speech, music, and wireless communications using software or hardware by employing basic mathematical methods. The book starts with an overview of signal processing, introducing readers to the field. It goes on to give instruction in converting continuous time signals into digital signals and discusses various methods to process the digital signals, such as filtering. The author uses MATLAB throughout as a user-friendly software tool to perform various digital signal processing algorithms and to simulate real-time systems. Readers learn how to convert analog signals into digital signals; how to process these signals using software or hardware; and how to write algorithms to perform useful operations on the acquired signals such as filtering, detecting digitally modulated signals, correcting channel distortions, etc. Students are also shown how to convert MATLAB codes into firmware codes. Further, students will be able to apply the basic digital signal processing techniques in their workplace. The book is based on the author's popular online course at University of California, San Diego.



Introduction To Digital Signal Processing And Filter Design


Introduction To Digital Signal Processing And Filter Design
DOWNLOAD
Author : B. A. Shenoi
language : en
Publisher: John Wiley & Sons
Release Date : 2005-11-07

Introduction To Digital Signal Processing And Filter Design written by B. A. Shenoi and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2005-11-07 with Computers categories.


A practical and accessible guide to understanding digital signal processing Introduction to Digital Signal Processing and Filter Design was developed and fine-tuned from the author's twenty-five years of experience teaching classes in digital signal processing. Following a step-by-step approach, students and professionals quickly master the fundamental concepts and applications of discrete-time signals and systems as well as the synthesis of these systems to meet specifications in the time and frequency domains. Striking the right balance between mathematical derivations and theory, the book features: * Discrete-time signals and systems * Linear difference equations * Solutions by recursive algorithms * Convolution * Time and frequency domain analysis * Discrete Fourier series * Design of FIR and IIR filters * Practical methods for hardware implementation A unique feature of this book is a complete chapter on the use of a MATLAB(r) tool, known as the FDA (Filter Design and Analysis) tool, to investigate the effect of finite word length and different formats of quantization, different realization structures, and different methods for filter design. This chapter contains material of practical importance that is not found in many books used in academic courses. It introduces students in digital signal processing to what they need to know to design digital systems using DSP chips currently available from industry. With its unique, classroom-tested approach, Introduction to Digital Signal Processing and Filter Design is the ideal text for students in electrical and electronic engineering, computer science, and applied mathematics, and an accessible introduction or refresher for engineers and scientists in the field.



Practical Digital Signal Processing With Matlab And Simulink


Practical Digital Signal Processing With Matlab And Simulink
DOWNLOAD
Author : Changrong Li
language : en
Publisher: Delmar Thomson Learning
Release Date : 2005-04

Practical Digital Signal Processing With Matlab And Simulink written by Changrong Li and has been published by Delmar Thomson Learning this book supported file pdf, txt, epub, kindle and other format this book has been release on 2005-04 with Computers categories.


Practical Digital Signal Processing with Matlab and Simulink teaches how Matlab and Simulink can increase productivity and enable students, professionals, and scientists to develop new applications for digital signal processing. Avoiding the barriers of abstract theory and detailed mathematics, this book enables readers to put the powerful tools of DSP to work in their research and designs, even with only a cursory familiarity with the underlying mathematical theory. Simulink is useful for creating and analyzing DSP algorithm designs - but its hands-on interactivity also make it an excellent tool for understanding DSP theories and applying them to real-world applications. It also provides a workable, step-by-step framework for deploying these DSP concepts and functions into the system design. The design and simulation of DSP applications with the full power of Matlab and Simulink are systematically presented along with the fundamentals of each tool.



Real Time Digital Signal Processing From Matlab To C With The Tms320c6x Dsps Second Edition


Real Time Digital Signal Processing From Matlab To C With The Tms320c6x Dsps Second Edition
DOWNLOAD
Author : Thad B. Welch
language : en
Publisher: CRC Press
Release Date : 2011-12-22

Real Time Digital Signal Processing From Matlab To C With The Tms320c6x Dsps Second Edition written by Thad B. Welch and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-12-22 with Technology & Engineering categories.


From the Foreword: "...There are many good textbooks today to teach digital signal processing, but most of them are content to teach the theory, and perhaps some MATLAB® simulations. This book has taken a bold step forward. It not only presents the theory, it reinforces it with simulations, and then it shows us how to actually use the results in real-time applications. This last step is not a trivial step, and that is why so many books, and courses, present only theory and simulations. With the combined expertise of the three authors of this text...the reader can step into the real-time world of applications with a text that presents an accessible path..." —Delores M. Etter, Texas Instruments Distinguished Chair in Electrical Engineering and Executive Director, Caruth Institute for Engineering Education, Southern Methodist University, Dallas, Texas, USA Mastering practical application of real-time digital signal processing (DSP) remains one of the most challenging and time-consuming pursuits in the field. It is even more difficult without a resource to bridge the gap between theory and practice. Filling that void, Real-Time Digital Signal Processing from MATLAB® to C with the TMS320C6x DSPs, Second Edition is organized in three sections that cover enduring fundamentals and present practical projects and invaluable appendices. This updated edition gives readers hands-on experience in real-time DSP using a practical, step-by-step framework that also incorporates demonstrations, exercises, and problems, coupled with brief overviews of applicable theory and MATLAB® application. Engineers, educators, and students rely on this book for precise, simplified instruction on use of real-time DSP applications. The book’s software supports the latest high-performance hardware, including the powerful, inexpensive, and versatile OMAP-L138 Experimenter Kit and other development boards. Incorporating readers’ valuable feedback and suggestions, this installment covers additional topics (such as PN sequences) and more advanced real-time DSP projects (including higher-order digital communications projects), making it even more valuable as a learning tool.



Signals Systems Transforms And Digital Signal Processing With Matlab


Signals Systems Transforms And Digital Signal Processing With Matlab
DOWNLOAD
Author : Michael Corinthios
language : en
Publisher: CRC Press
Release Date : 2018-09-03

Signals Systems Transforms And Digital Signal Processing With Matlab written by Michael Corinthios and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-09-03 with Technology & Engineering categories.


Signals, Systems, Transforms, and Digital Signal Processing with MATLAB® has as its principal objective simplification without compromise of rigor. Graphics, called by the author, "the language of scientists and engineers", physical interpretation of subtle mathematical concepts, and a gradual transition from basic to more advanced topics are meant to be among the important contributions of this book. After illustrating the analysis of a function through a step-by-step addition of harmonics, the book deals with Fourier and Laplace transforms. It then covers discrete time signals and systems, the z-transform, continuous- and discrete-time filters, active and passive filters, lattice filters, and continuous- and discrete-time state space models. The author goes on to discuss the Fourier transform of sequences, the discrete Fourier transform, and the fast Fourier transform, followed by Fourier-, Laplace, and z-related transforms, including Walsh–Hadamard, generalized Walsh, Hilbert, discrete cosine, Hartley, Hankel, Mellin, fractional Fourier, and wavelet. He also surveys the architecture and design of digital signal processors, computer architecture, logic design of sequential circuits, and random signals. He concludes with simplifying and demystifying the vital subject of distribution theory. Drawing on much of the author’s own research work, this book expands the domains of existence of the most important transforms and thus opens the door to a new world of applications using novel, powerful mathematical tools.



Real Time Digital Signal Processing From Matlab To C With The Tms320c6x Dsps


Real Time Digital Signal Processing From Matlab To C With The Tms320c6x Dsps
DOWNLOAD
Author : Thad B. Welch
language : en
Publisher: CRC Press
Release Date : 2016-12-19

Real Time Digital Signal Processing From Matlab To C With The Tms320c6x Dsps written by Thad B. Welch and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-12-19 with Computers categories.


This updated edition gives readers hands-on experience in real-time DSP using a practical, step-by-step framework that also incorporates demonstrations, exercises, and problems, coupled with brief overviews of applicable theory and MATLAB applications. Organized in three sections that cover enduring fundamentals and present practical projects and invaluable appendices, this new edition provides support for the most recent and powerful of the inexpensive DSP development boards currently available from Texas Instruments: the OMAP-L138 LCDK. It includes two new real-time DSP projects, as well as three new appendices: an introduction to the Code Generation tools available with MATLAB, a guide on how to turn the LCDK into a portable battery-operated device, and a comparison of the three DSP boards directly supported by this edition.



Digital Signal Processing Laboratory


Digital Signal Processing Laboratory
DOWNLOAD
Author : B. Preetham Kumar
language : en
Publisher: CRC Press
Release Date : 2016-04-19

Digital Signal Processing Laboratory written by B. Preetham Kumar and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-04-19 with Technology & Engineering categories.


Considering the rapid evolution of digital signal processing (DSP), those studying this field require an easily understandable text that complements practical software and hardware applications with sufficient coverage of theory. Designed to keep pace with advancements in the field and elucidate lab work, Digital Signal Processing Laboratory,



Real Time Digital Signal Processing From Matlab To C With The Tms320c6x Dsk


Real Time Digital Signal Processing From Matlab To C With The Tms320c6x Dsk
DOWNLOAD
Author : Thad B. Welch
language : en
Publisher: CRC Press
Release Date : 2005-12-21

Real Time Digital Signal Processing From Matlab To C With The Tms320c6x Dsk written by Thad B. Welch and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2005-12-21 with Technology & Engineering categories.


From personal music players to anti-lock brakes and advanced digital flight controllers, the demand for real-time digital signal processing (DSP) continues to grow. Mastering real-time DSP is one of the most challenging and time-consuming pursuits in the field, exacerbated by the lack of a resource that solidly bridges the gap between theory and pr



Real Time Digital Signal Processing


Real Time Digital Signal Processing
DOWNLOAD
Author : Sen M. Kuo
language : en
Publisher: John Wiley & Sons
Release Date : 2006-05-01

Real Time Digital Signal Processing written by Sen M. Kuo and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-05-01 with Technology & Engineering categories.


Real-time Digital Signal Processing: Implementations and Applications has been completely updated and revised for the 2nd edition and remains the only book on DSP to provide an overview of DSP theory and programming with hands-on experiments using MATLAB, C and the newest fixed-point processors from Texas Instruments (TI).