Matrix Algebra For Physicists

DOWNLOAD
Download Matrix Algebra For Physicists PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Matrix Algebra For Physicists book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Matrix Algebra For Physicists
DOWNLOAD
Author : Robert Karl Eisenschitz
language : en
Publisher: Springer
Release Date : 2013-11-11
Matrix Algebra For Physicists written by Robert Karl Eisenschitz and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-11-11 with Mathematics categories.
Linear Algebra
DOWNLOAD
Author : Arak M. Mathai
language : en
Publisher: Walter de Gruyter GmbH & Co KG
Release Date : 2017-10-23
Linear Algebra written by Arak M. Mathai and has been published by Walter de Gruyter GmbH & Co KG this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-10-23 with Mathematics categories.
In order not to intimidate students by a too abstract approach, this textbook on linear algebra is written to be easy to digest by non-mathematicians. It introduces the concepts of vector spaces and mappings between them without dwelling on statements such as theorems and proofs too much. It is also designed to be self-contained, so no other material is required for an understanding of the topics covered. As the basis for courses on space and atmospheric science, remote sensing, geographic information systems, meteorology, climate and satellite communications at UN-affiliated regional centers, various applications of the formal theory are discussed as well. These include differential equations, statistics, optimization and some engineering-motivated problems in physics. Contents Vectors Matrices Determinants Eigenvalues and eigenvectors Some applications of matrices and determinants Matrix series and additional properties of matrices
Matrix Operations For Engineers And Scientists
DOWNLOAD
Author : Alan Jeffrey
language : en
Publisher: Springer Science & Business Media
Release Date : 2010-09-05
Matrix Operations For Engineers And Scientists written by Alan Jeffrey and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-09-05 with Science categories.
Engineers and scientists need to have an introduction to the basics of linear algebra in a context they understand. Computer algebra systems make the manipulation of matrices and the determination of their properties a simple matter, and in practical applications such software is often essential. However, using this tool when learning about matrices, without first gaining a proper understanding of the underlying theory, limits the ability to use matrices and to apply them to new problems. This book explains matrices in the detail required by engineering or science students, and it discusses linear systems of ordinary differential equations. These students require a straightforward introduction to linear algebra illustrated by applications to which they can relate. It caters of the needs of undergraduate engineers in all disciplines, and provides considerable detail where it is likely to be helpful. According to the author the best way to understand the theory of matrices is by working simple exercises designed to emphasize the theory, that at the same time avoid distractions caused by unnecessary numerical calculations. Hence, examples and exercises in this book have been constructed in such a way that wherever calculations are necessary they are straightforward. For example, when a characteristic equation occurs, its roots (the eigenvalues of a matrix) can be found by inspection. The author of this book is Alan Jeffrey, Emeritus Professor of mathematics at the University of Newcastle upon Tyne. He has given courses on engineering mathematics at UK and US Universities.
Linear Algebra And Analytic Geometry For Physical Sciences
DOWNLOAD
Author : Giovanni Landi
language : en
Publisher: Springer
Release Date : 2018-05-12
Linear Algebra And Analytic Geometry For Physical Sciences written by Giovanni Landi and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-05-12 with Science categories.
A self-contained introduction to finite dimensional vector spaces, matrices, systems of linear equations, spectral analysis on euclidean and hermitian spaces, affine euclidean geometry, quadratic forms and conic sections. The mathematical formalism is motivated and introduced by problems from physics, notably mechanics (including celestial) and electro-magnetism, with more than two hundreds examples and solved exercises.Topics include: The group of orthogonal transformations on euclidean spaces, in particular rotations, with Euler angles and angular velocity. The rigid body with its inertia matrix. The unitary group. Lie algebras and exponential map. The Dirac’s bra-ket formalism. Spectral theory for self-adjoint endomorphisms on euclidean and hermitian spaces. The Minkowski spacetime from special relativity and the Maxwell equations. Conic sections with the use of eccentricity and Keplerian motions. An appendix collects basic algebraic notions like group, ring and field; and complex numbers and integers modulo a prime number.The book will be useful to students taking a physics or engineer degree for a basic education as well as for students who wish to be competent in the subject and who may want to pursue a post-graduate qualification.
Special Matrices Of Mathematical Physics
DOWNLOAD
Author : Ruben Aldrovandi
language : en
Publisher: World Scientific
Release Date : 2001
Special Matrices Of Mathematical Physics written by Ruben Aldrovandi and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2001 with Mathematics categories.
Ch. 1. Some fundamental notions. 1.1. Definitions. 1.2. Components of a matrix. 1.3. Matrix functions. 1.4. Normal matrices -- ch. 2. Evolving systems -- ch. 3. Markov chains. 3.1. Non-negative matrices. 3.2. General properties -- ch. 4. Glass transition -- ch. 5. The Kerner model. 5.1. A simple example: Se-As glass -- ch. 6. Formal developments. 6.1. Spectral aspects. 6.2. Reducibility and regularity. 6.3. Projectors and asymptotics. 6.4. Continuum time -- ch. 7. Equilibrium, dissipation and ergodicity. 7.1. Recurrence, transience and periodicity. 7.2. Detailed balancing and reversibility. 7.3. Ergodicity -- ch. 8. Prelude -- ch. 9. Definition and main properties. 9.1. Bases. 9.2. Double Fourier transform. 9.3. Random walks -- ch. 10. Discrete quantum mechanics. 10.1. Introduction. 10.2. Weyl-Heisenberg groups. 10.3. Weyl-Wigner transformations. 10.4. Braiding and quantum groups -- ch. 11. Quantum symplectic structure. 11.1. Matrix differential geometry. 11.2. The symplectic form. 11.3. The quantum fabric -- ch. 12. An organizing tool -- ch. 13. Bell polynomials. 13.1. Definition and elementary properties. 13.2. The matrix representation. 13.3. The Lagrange inversion formula. 13.4. Developments -- ch. 14. Determinants and traces. 14.1. Introduction. 14.2. Symmetric functions. 14.3. Polynomials. 14.4. Characteristic polynomials. 14.5. Lie algebras invariants -- ch. 15. Projectors and iterates. 15.1. Projectors, revisited. 15.2. Continuous iterates -- ch. 16. Gases: real and ideal. 16.1. Microcanonical ensemble. 16.2. The canonical ensemble. 16.3. The grand canonical ensemble. 16.4. Braid statistics. 16.5. Condensation theories. 16.6. The Fredholm formalism.
Vector Spaces And Matrices In Physics
DOWNLOAD
Author : M. C. Jain
language : en
Publisher: CRC Press
Release Date : 2001
Vector Spaces And Matrices In Physics written by M. C. Jain and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2001 with Mathematics categories.
The theory of vector spaces and matrices is an essential part of the mathematical background required by physicists. Most books on the subject, however, do not adequately meet the requirements of physics courses-they tend to be either highly mathematical or too elementary. Books that focus on mathematical theory may render the subject too dry to hold the interest of physics students, while books that are more elementary tend to neglect some topics that are vital in the development of physical theories. In particular, there is often very little discussion of vector spaces, and many books introduce matrices merely as a computational tool. Vector Spaces and Matrices in Physics fills the gap between the elementary and the heavily mathematical treatments of the subject with an approach and presentation ideal for graduate-level physics students. After building a foundation in vector spaces and matrix algebra, the author takes care to emphasize the role of matrices as representations of linear transformations on vector spaces, a concept of matrix theory that is essential for a proper understanding of quantum mechanics. He includes numerous solved and unsolved problems, and enough hints for the unsolved problems to make the book self-sufficient. Developed through many years of lecture notes, Vector Spaces and Matrices in Physics was written primarily as a graduate and post-graduate textbook and as a reference for physicists. Its clear presentation and concise but thorough coverage, however, make it useful for engineers, chemists, economists, and anyone who needs a background in matrices for application in other areas.
Linear Algebra And Matrix Theory
DOWNLOAD
Author : Robert R. Stoll
language : en
Publisher: Courier Corporation
Release Date : 2012-10-17
Linear Algebra And Matrix Theory written by Robert R. Stoll and has been published by Courier Corporation this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-10-17 with Mathematics categories.
Advanced undergraduate and first-year graduate students have long regarded this text as one of the best available works on matrix theory in the context of modern algebra. Teachers and students will find it particularly suited to bridging the gap between ordinary undergraduate mathematics and completely abstract mathematics. The first five chapters treat topics important to economics, psychology, statistics, physics, and mathematics. Subjects include equivalence relations for matrixes, postulational approaches to determinants, and bilinear, quadratic, and Hermitian forms in their natural settings. The final chapters apply chiefly to students of engineering, physics, and advanced mathematics. They explore groups and rings, canonical forms for matrixes with respect to similarity via representations of linear transformations, and unitary and Euclidean vector spaces. Numerous examples appear throughout the text.
Introduction To Applied Linear Algebra
DOWNLOAD
Author : Stephen Boyd
language : en
Publisher: Cambridge University Press
Release Date : 2018-06-07
Introduction To Applied Linear Algebra written by Stephen Boyd and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-06-07 with Business & Economics categories.
A groundbreaking introduction to vectors, matrices, and least squares for engineering applications, offering a wealth of practical examples.
Matrices And Linear Algebra
DOWNLOAD
Author : Hans Schneider
language : en
Publisher: Courier Corporation
Release Date : 1989-01-01
Matrices And Linear Algebra written by Hans Schneider and has been published by Courier Corporation this book supported file pdf, txt, epub, kindle and other format this book has been release on 1989-01-01 with Mathematics categories.
Linear algebra is one of the central disciplines in mathematics. A student of pure mathematics must know linear algebra if he is to continue with modern algebra or functional analysis. Much of the mathematics now taught to engineers and physicists requires it. This well-known and highly regarded text makes the subject accessible to undergraduates with little mathematical experience. Written mainly for students in physics, engineering, economics, and other fields outside mathematics, the book gives the theory of matrices and applications to systems of linear equations, as well as many related topics such as determinants, eigenvalues, and differential equations. Table of Contents: l. The Algebra of Matrices 2. Linear Equations 3. Vector Spaces 4. Determinants 5. Linear Transformations 6. Eigenvalues and Eigenvectors 7. Inner Product Spaces 8. Applications to Differential Equations For the second edition, the authors added several exercises in each chapter and a brand new section in Chapter 7. The exercises, which are both true-false and multiple-choice, will enable the student to test his grasp of the definitions and theorems in the chapter. The new section in Chapter 7 illustrates the geometric content of Sylvester's Theorem by means of conic sections and quadric surfaces. 6 line drawings. lndex. Two prefaces. Answer section.