Maximum Likelihood Estimation And Inference

DOWNLOAD
Download Maximum Likelihood Estimation And Inference PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Maximum Likelihood Estimation And Inference book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Maximum Likelihood Estimation And Inference
DOWNLOAD
Author : Russell B. Millar
language : en
Publisher: John Wiley & Sons
Release Date : 2011-07-26
Maximum Likelihood Estimation And Inference written by Russell B. Millar and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-07-26 with Mathematics categories.
This book takes a fresh look at the popular and well-established method of maximum likelihood for statistical estimation and inference. It begins with an intuitive introduction to the concepts and background of likelihood, and moves through to the latest developments in maximum likelihood methodology, including general latent variable models and new material for the practical implementation of integrated likelihood using the free ADMB software. Fundamental issues of statistical inference are also examined, with a presentation of some of the philosophical debates underlying the choice of statistical paradigm. Key features: Provides an accessible introduction to pragmatic maximum likelihood modelling. Covers more advanced topics, including general forms of latent variable models (including non-linear and non-normal mixed-effects and state-space models) and the use of maximum likelihood variants, such as estimating equations, conditional likelihood, restricted likelihood and integrated likelihood. Adopts a practical approach, with a focus on providing the relevant tools required by researchers and practitioners who collect and analyze real data. Presents numerous examples and case studies across a wide range of applications including medicine, biology and ecology. Features applications from a range of disciplines, with implementation in R, SAS and/or ADMB. Provides all program code and software extensions on a supporting website. Confines supporting theory to the final chapters to maintain a readable and pragmatic focus of the preceding chapters. This book is not just an accessible and practical text about maximum likelihood, it is a comprehensive guide to modern maximum likelihood estimation and inference. It will be of interest to readers of all levels, from novice to expert. It will be of great benefit to researchers, and to students of statistics from senior undergraduate to graduate level. For use as a course text, exercises are provided at the end of each chapter.
Estimation Inference And Specification Analysis
DOWNLOAD
Author : Halbert White
language : en
Publisher: Cambridge University Press
Release Date : 1996-06-28
Estimation Inference And Specification Analysis written by Halbert White and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 1996-06-28 with Business & Economics categories.
This book examines the consequences of misspecifications for the interpretation of likelihood-based methods of statistical estimation and interference. The analysis concludes with an examination of methods by which the possibility of misspecification can be empirically investigated.
Maximum Likelihood Estimation
DOWNLOAD
Author : Scott R. Eliason
language : en
Publisher: SAGE
Release Date : 1993
Maximum Likelihood Estimation written by Scott R. Eliason and has been published by SAGE this book supported file pdf, txt, epub, kindle and other format this book has been release on 1993 with Mathematics categories.
"Maximum Likelihood Estimation. . . provides a useful introduction. . . it is clear and easy to follow with applications and graphs. . . . I consider this a very useful book. . . . well-written, with a wealth of explanation. . ." --Dougal Hutchison in Educational Research Eliason reveals to the reader the underlying logic and practice of maximum likelihood (ML) estimation by providing a general modeling framework that utilizes the tools of ML methods. This framework offers readers a flexible modeling strategy since it accommodates cases from the simplest linear models (such as the normal error regression model) to the most complex nonlinear models that link a system of endogenous and exogenous variables with non-normal distributions. Using examples to illustrate the techniques of finding ML estimators and estimates, Eliason discusses what properties are desirable in an estimator, basic techniques for finding maximum likelihood solutions, the general form of the covariance matrix for ML estimates, the sampling distribution of ML estimators; the use of ML in the normal as well as other distributions, and some useful illustrations of likelihoods.
The Sage Handbook Of Regression Analysis And Causal Inference
DOWNLOAD
Author : Henning Best
language : en
Publisher: SAGE
Release Date : 2013-12-20
The Sage Handbook Of Regression Analysis And Causal Inference written by Henning Best and has been published by SAGE this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-12-20 with Social Science categories.
′The editors of the new SAGE Handbook of Regression Analysis and Causal Inference have assembled a wide-ranging, high-quality, and timely collection of articles on topics of central importance to quantitative social research, many written by leaders in the field. Everyone engaged in statistical analysis of social-science data will find something of interest in this book.′ - John Fox, Professor, Department of Sociology, McMaster University ′The authors do a great job in explaining the various statistical methods in a clear and simple way - focussing on fundamental understanding, interpretation of results, and practical application - yet being precise in their exposition.′ - Ben Jann, Executive Director, Institute of Sociology, University of Bern ′Best and Wolf have put together a powerful collection, especially valuable in its separate discussions of uses for both cross-sectional and panel data analysis.′ -Tom Smith, Senior Fellow, NORC, University of Chicago Edited and written by a team of leading international social scientists, this Handbook provides a comprehensive introduction to multivariate methods. The Handbook focuses on regression analysis of cross-sectional and longitudinal data with an emphasis on causal analysis, thereby covering a large number of different techniques including selection models, complex samples, and regression discontinuities. Each Part starts with a non-mathematical introduction to the method covered in that section, giving readers a basic knowledge of the method’s logic, scope and unique features. Next, the mathematical and statistical basis of each method is presented along with advanced aspects. Using real-world data from the European Social Survey (ESS) and the Socio-Economic Panel (GSOEP), the book provides a comprehensive discussion of each method’s application, making this an ideal text for PhD students and researchers embarking on their own data analysis.
Mathematical Statistics
DOWNLOAD
Author : Richard J. Rossi
language : en
Publisher: John Wiley & Sons
Release Date : 2018-10-02
Mathematical Statistics written by Richard J. Rossi and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-10-02 with Mathematics categories.
Presents a unified approach to parametric estimation, confidence intervals, hypothesis testing, and statistical modeling, which are uniquely based on the likelihood function This book addresses mathematical statistics for upper-undergraduates and first year graduate students, tying chapters on estimation, confidence intervals, hypothesis testing, and statistical models together to present a unifying focus on the likelihood function. It also emphasizes the important ideas in statistical modeling, such as sufficiency, exponential family distributions, and large sample properties. Mathematical Statistics: An Introduction to Likelihood Based Inference makes advanced topics accessible and understandable and covers many topics in more depth than typical mathematical statistics textbooks. It includes numerous examples, case studies, a large number of exercises ranging from drill and skill to extremely difficult problems, and many of the important theorems of mathematical statistics along with their proofs. In addition to the connected chapters mentioned above, Mathematical Statistics covers likelihood-based estimation, with emphasis on multidimensional parameter spaces and range dependent support. It also includes a chapter on confidence intervals, which contains examples of exact confidence intervals along with the standard large sample confidence intervals based on the MLE's and bootstrap confidence intervals. There’s also a chapter on parametric statistical models featuring sections on non-iid observations, linear regression, logistic regression, Poisson regression, and linear models. Prepares students with the tools needed to be successful in their future work in statistics data science Includes practical case studies including real-life data collected from Yellowstone National Park, the Donner party, and the Titanic voyage Emphasizes the important ideas to statistical modeling, such as sufficiency, exponential family distributions, and large sample properties Includes sections on Bayesian estimation and credible intervals Features examples, problems, and solutions Mathematical Statistics: An Introduction to Likelihood Based Inference is an ideal textbook for upper-undergraduate and graduate courses in probability, mathematical statistics, and/or statistical inference.
Targeted Learning
DOWNLOAD
Author : Mark J. van der Laan
language : en
Publisher: Springer Science & Business Media
Release Date : 2011-06-17
Targeted Learning written by Mark J. van der Laan and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-06-17 with Mathematics categories.
The statistics profession is at a unique point in history. The need for valid statistical tools is greater than ever; data sets are massive, often measuring hundreds of thousands of measurements for a single subject. The field is ready to move towards clear objective benchmarks under which tools can be evaluated. Targeted learning allows (1) the full generalization and utilization of cross-validation as an estimator selection tool so that the subjective choices made by humans are now made by the machine, and (2) targeting the fitting of the probability distribution of the data toward the target parameter representing the scientific question of interest. This book is aimed at both statisticians and applied researchers interested in causal inference and general effect estimation for observational and experimental data. Part I is an accessible introduction to super learning and the targeted maximum likelihood estimator, including related concepts necessary to understand and apply these methods. Parts II-IX handle complex data structures and topics applied researchers will immediately recognize from their own research, including time-to-event outcomes, direct and indirect effects, positivity violations, case-control studies, censored data, longitudinal data, and genomic studies.
Introduction To Empirical Processes And Semiparametric Inference
DOWNLOAD
Author : Michael R. Kosorok
language : en
Publisher: Springer Science & Business Media
Release Date : 2007-12-29
Introduction To Empirical Processes And Semiparametric Inference written by Michael R. Kosorok and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-12-29 with Mathematics categories.
The goal of this book is to introduce statisticians, and other researchers with a background in mathematical statistics, to empirical processes and semiparametric inference. These powerful research techniques are surpr- ingly useful for studying large sample properties of statistical estimates from realistically complex models as well as for developing new and - proved approaches to statistical inference. This book is more of a textbook than a research monograph, although a number of new results are presented. The level of the book is more - troductory than the seminal work of van der Vaart and Wellner (1996). In fact, another purpose of this work is to help readers prepare for the mathematically advanced van der Vaart and Wellner text, as well as for the semiparametric inference work of Bickel, Klaassen, Ritov and We- ner (1997). These two books, along with Pollard (1990) and Chapters 19 and 25 of van der Vaart (1998), formulate a very complete and successful elucidation of modern empirical process methods. The present book owes much by the way of inspiration, concept, and notation to these previous works.What is perhaps new is the gradual—yetrigorous—anduni?ed way this book introduces the reader to the ?eld.
Maximum Likelihood Estimation For Sample Surveys
DOWNLOAD
Author : Raymond L. Chambers
language : en
Publisher: CRC Press
Release Date : 2012-05-02
Maximum Likelihood Estimation For Sample Surveys written by Raymond L. Chambers and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-05-02 with Mathematics categories.
Sample surveys provide data used by researchers in a large range of disciplines to analyze important relationships using well-established and widely used likelihood methods. The methods used to select samples often result in the sample differing in important ways from the target population and standard application of likelihood methods can lead to biased and inefficient estimates. Maximum Likelihood Estimation for Sample Surveys presents an overview of likelihood methods for the analysis of sample survey data that account for the selection methods used, and includes all necessary background material on likelihood inference. It covers a range of data types, including multilevel data, and is illustrated by many worked examples using tractable and widely used models. It also discusses more advanced topics, such as combining data, non-response, and informative sampling. The book presents and develops a likelihood approach for fitting models to sample survey data. It explores and explains how the approach works in tractable though widely used models for which we can make considerable analytic progress. For less tractable models numerical methods are ultimately needed to compute the score and information functions and to compute the maximum likelihood estimates of the model parameters. For these models, the book shows what has to be done conceptually to develop analyses to the point that numerical methods can be applied. Designed for statisticians who are interested in the general theory of statistics, Maximum Likelihood Estimation for Sample Surveys is also aimed at statisticians focused on fitting models to sample survey data, as well as researchers who study relationships among variables and whose sources of data include surveys.
The Generic Chaining
DOWNLOAD
Author : Michel Talagrand
language : en
Publisher: Springer Science & Business Media
Release Date : 2005-12-08
The Generic Chaining written by Michel Talagrand and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2005-12-08 with Mathematics categories.
Author's Note: The material of this book has been reworked and expanded with a lot more detail and published in the author's 2014 book "Upper and Lower Bounds for Stochastic Processes" (Ergebnisse Vol. 60, ISBN 978-3-642-54074-5). That book is much easier to read and covers everything that is in "The Generic Chaining" book in a more detailed and comprehensible way. ************What is the maximum level a certain river is likely to reach over the next 25 years? (Having experienced three times a few feet of water in my house, I feel a keen personal interest in this question. ) There are many questions of the same nature: what is the likely magnitude of the strongest earthquake to occur during the life of a planned building, or the speed of the strongest wind a suspension bridge will have to stand? All these situations can be modeled in the same manner. The value X of the quantity of interest (be it water t level or speed of wind) at time t is a random variable. What can be said about the maximum value of X over a certain range of t? t A collection of random variables (X ), where t belongs to a certain index t set T, is called a stochastic process, and the topic of this book is the study of the supremum of certain stochastic processes, and more precisely to ?nd upper and lower bounds for the quantity EsupX . (0. 1) t t?T Since T might be uncountable, some care has to be taken to de?ne this quantity. For any reasonable de?nition of Esup X we have t t?T EsupX =sup{EsupX ; F?T,F ?nite} , (0. 2) t t t?T t?F an equality that we will take as the de?nition of the quantity Esup X . t t?T Thus, the crucial case for the estimation of the quantity (0.