Mechanics And Uncertainty

DOWNLOAD
Download Mechanics And Uncertainty PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Mechanics And Uncertainty book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Mastering Uncertainty In Mechanical Engineering
DOWNLOAD
Author : Peter F. Pelz
language : en
Publisher: Springer Nature
Release Date : 2021-10-11
Mastering Uncertainty In Mechanical Engineering written by Peter F. Pelz and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-10-11 with Technology & Engineering categories.
This open access book reports on innovative methods, technologies and strategies for mastering uncertainty in technical systems. Despite the fact that current research on uncertainty is mainly focusing on uncertainty quantification and analysis, this book gives emphasis to innovative ways to master uncertainty in engineering design, production and product usage alike. It gathers authoritative contributions by more than 30 scientists reporting on years of research in the areas of engineering, applied mathematics and law, thus offering a timely, comprehensive and multidisciplinary account of theories and methods for quantifying data, model and structural uncertainty, and of fundamental strategies for mastering uncertainty. It covers key concepts such as robustness, flexibility and resilience in detail. All the described methods, technologies and strategies have been validated with the help of three technical systems, i.e. the Modular Active Spring-Damper System, the Active Air Spring and the 3D Servo Press, which have been in turn developed and tested during more than ten years of cooperative research. Overall, this book offers a timely, practice-oriented reference guide to graduate students, researchers and professionals dealing with uncertainty in the broad field of mechanical engineering.
Selected Papers
DOWNLOAD
Author : Igor E. Tamm
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
Selected Papers written by Igor E. Tamm and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Science categories.
I.E. Tamm is one of the great figures of 20th century physics and the mentor of the late A.D. Sakharov. Together with I.M. Frank, he received the Nobel Prize in 1958 for the explanation of the Cherenkov effect. This book contains a commented selection of his most important contributions to the physical literature and essays on his contemporaries - Mandelstam, Einstein, Landau, and Bohr - as well as his contributions to Pugwash conferences. About a third of the selections originally appeared in Russian and are, to our knowledge, for the first time now available to Western readers. This volume includes a preface by Sir Rudolf Peierls, a biography compiled by Tamm's former students, V.Ya. Frenkel and B.M. Bolotovskii, and a complete bibliography.
The Uncertainty Principle In Harmonic Analysis
DOWNLOAD
Author : Victor Havin
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
The Uncertainty Principle In Harmonic Analysis written by Victor Havin and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.
The present book is a collection of variations on a theme which can be summed up as follows: It is impossible for a non-zero function and its Fourier transform to be simultaneously very small. In other words, the approximate equalities x :::::: y and x :::::: fj cannot hold, at the same time and with a high degree of accuracy, unless the functions x and yare identical. Any information gained about x (in the form of a good approximation y) has to be paid for by a corresponding loss of control on x, and vice versa. Such is, roughly speaking, the import of the Uncertainty Principle (or UP for short) referred to in the title ofthis book. That principle has an unmistakable kinship with its namesake in physics - Heisenberg's famous Uncertainty Principle - and may indeed be regarded as providing one of mathematical interpretations for the latter. But we mention these links with Quantum Mechanics and other connections with physics and engineering only for their inspirational value, and hasten to reassure the reader that at no point in this book will he be led beyond the world of purely mathematical facts. Actually, the portion of this world charted in our book is sufficiently vast, even though we confine ourselves to trigonometric Fourier series and integrals (so that "The U. P. in Fourier Analysis" might be a slightly more appropriate title than the one we chose).
The Physical Principles Of The Quantum Theory
DOWNLOAD
Author : Werner Heisenberg
language : en
Publisher: Courier Corporation
Release Date : 2013-04-15
The Physical Principles Of The Quantum Theory written by Werner Heisenberg and has been published by Courier Corporation this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-04-15 with Science categories.
Nobel Laureate discusses quantum theory, uncertainty, wave mechanics, work of Dirac, Schroedinger, Compton, Einstein, others. "An authoritative statement of Heisenberg's views on this aspect of the quantum theory." — Nature.
Uncertainty Principle Of Werner Heisenberg
DOWNLOAD
Author : IntroBooks Team
language : en
Publisher: IntroBooks
Release Date :
Uncertainty Principle Of Werner Heisenberg written by IntroBooks Team and has been published by IntroBooks this book supported file pdf, txt, epub, kindle and other format this book has been release on with Science categories.
Quantum mechanics is widely considered to be the scientific theory that is one's best choice for the fundamental and universal explanation of the physical world. The conceptual structure used in this theory varies dramatically from that of classical physics. After all, the transition from classical to quantum physics is a true revolution in people's understanding of the physical universe. One striking feature of the distinction between classical and quantum physics is that while classical mechanics assumes that precise simultaneous values can be assigned to all physical quantities, quantum mechanics, on the other hand, rejects this possibility, the classic example being the momentum and position of a particle.
A Textbook Of Physical Chemistry Volume 1
DOWNLOAD
Author : Mandeep Dalal
language : en
Publisher: Dalal Institute
Release Date : 2018-01-01
A Textbook Of Physical Chemistry Volume 1 written by Mandeep Dalal and has been published by Dalal Institute this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-01-01 with Science categories.
An advanced-level textbook of physical chemistry for the graduate (B.Sc) and postgraduate (M.Sc) students of Indian and foreign universities. This book is a part of four volume series, entitled "A Textbook of Physical Chemistry – Volume I, II, III, IV". CONTENTS: Chapter 1. Quantum Mechanics – I: Postulates of quantum mechanics; Derivation of Schrodinger wave equation; Max-Born interpretation of wave functions; The Heisenberg’s uncertainty principle; Quantum mechanical operators and their commutation relations; Hermitian operators (elementary ideas, quantum mechanical operator for linear momentum, angular momentum and energy as Hermition operator); The average value of the square of Hermitian operators; Commuting operators and uncertainty principle(x & p; E & t); Schrodinger wave equation for a particle in one dimensional box; Evaluation of average position, average momentum and determination of uncertainty in position and momentum and hence Heisenberg’s uncertainty principle; Pictorial representation of the wave equation of a particle in one dimensional box and its influence on the kinetic energy of the particle in each successive quantum level; Lowest energy of the particle. Chapter 2. Thermodynamics – I: Brief resume of first and second Law of thermodynamics; Entropy changes in reversible and irreversible processes; Variation of entropy with temperature, pressure and volume; Entropy concept as a measure of unavailable energy and criteria for the spontaneity of reaction; Free energy, enthalpy functions and their significance, criteria for spontaneity of a process; Partial molar quantities (free energy, volume, heat concept); Gibb’s-Duhem equation. Chapter 3. Chemical Dynamics – I: Effect of temperature on reaction rates; Rate law for opposing reactions of Ist order and IInd order; Rate law for consecutive & parallel reactions of Ist order reactions; Collision theory of reaction rates and its limitations; Steric factor; Activated complex theory; Ionic reactions: single and double sphere models; Influence of solvent and ionic strength; The comparison of collision and activated complex theory. Chapter 4. Electrochemistry – I: Ion-Ion Interactions: The Debye-Huckel theory of ion- ion interactions; Potential and excess charge density as a function of distance from the central ion; Debye Huckel reciprocal length; Ionic cloud and its contribution to the total potential; Debye - Huckel limiting law of activity coefficients and its limitations; Ion-size effect on potential; Ion-size parameter and the theoretical mean-activity coefficient in the case of ionic clouds with finite-sized ions; Debye - Huckel-Onsager treatment for aqueous solutions and its limitations; Debye-Huckel-Onsager theory for non-aqueous solutions; The solvent effect on the mobality at infinite dilution; Equivalent conductivity (Λ) vs. concentration c 1/2 as a function of the solvent; Effect of ion association upon conductivity (Debye- Huckel - Bjerrum equation). Chapter 5. Quantum Mechanics – II: Schrodinger wave equation for a particle in a three dimensional box; The concept of degeneracy among energy levels for a particle in three dimensional box; Schrodinger wave equation for a linear harmonic oscillator & its solution by polynomial method; Zero point energy of a particle possessing harmonic motion and its consequence; Schrodinger wave equation for three dimensional Rigid rotator; Energy of rigid rotator; Space quantization; Schrodinger wave equation for hydrogen atom, separation of variable in polar spherical coordinates and its solution; Principle, azimuthal and magnetic quantum numbers and the magnitude of their values; Probability distribution function; Radial distribution function; Shape of atomic orbitals (s,p & d). Chapter 6. Thermodynamics – II: Classius-Clayperon equation; Law of mass action and its thermodynamic derivation; Third law of thermodynamics (Nernest heat theorem, determination of absolute entropy, unattainability of absolute zero) and its limitation; Phase diagram for two completely miscible components systems; Eutectic systems, Calculation of eutectic point; Systems forming solid compounds Ax By with congruent and incongruent melting points; Phase diagram and thermodynamic treatment of solid solutions. Chapter 7. Chemical Dynamics – II: Chain reactions: hydrogen-bromine reaction, pyrolysis of acetaldehyde, decomposition of ethane; Photochemical reactions (hydrogen - bromine & hydrogen -chlorine reactions); General treatment of chain reactions (ortho-para hydrogen conversion and hydrogen - bromine reactions); Apparent activation energy of chain reactions, Chain length; Rice-Herzfeld mechanism of organic molecules decomposition(acetaldehyde); Branching chain reactions and explosions ( H2-O2 reaction); Kinetics of (one intermediate) enzymatic reaction : Michaelis-Menton treatment; Evaluation of Michaelis 's constant for enzyme-substrate binding by Lineweaver-Burk plot and Eadie-Hofstae methods; Competitive and non-competitive inhibition. Chapter 8. Electrochemistry – II: Ion Transport in Solutions: Ionic movement under the influence of an electric field; Mobility of ions; Ionic drift velocity and its relation with current density; Einstein relation between the absolute mobility and diffusion coefficient; The Stokes- Einstein relation; The Nernst -Einstein equation; Walden’s rule; The Rate-process approach to ionic migration; The Rate process equation for equivalent conductivity; Total driving force for ionic transport, Nernst - Planck Flux equation; Ionic drift and diffusion potential; the Onsager phenomenological equations; The basic equation for the diffusion; Planck-Henderson equation for the diffusion potential.
University Physics
DOWNLOAD
Author : Samuel J. Ling
language : en
Publisher:
Release Date : 2016-09-29
University Physics written by Samuel J. Ling and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-09-29 with Mechanics categories.
"University Physics is a three-volume collection that meets the scope and sequence requirements for two- and three-semester calculus-based physics courses. Volume 1 covers mechanics, sound, oscillations, and waves. This textbook emphasizes connections between theory and application, making physics concepts interesting and accessible to students while maintaining the mathematical rigor inherent in the subject. Frequent, strong examples focus on how to approach a problem, how to work with the equations, and how to check and generalize the result."--Open Textbook Library.
Time In Quantum Mechanics
DOWNLOAD
Author : Gonzalo Muga
language : en
Publisher: Springer Science & Business Media
Release Date : 2007-12-07
Time In Quantum Mechanics written by Gonzalo Muga and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-12-07 with Science categories.
The treatment of time in quantum mechanics is still an important and challenging open question in the foundation of the quantum theory. This multi-authored book, written as an introductory guide for newcomers to the subject, as well as a useful source of information for the expert, covers many of the open questions. The book describes the problems, and the attempts and achievements in defining, formalizing and measuring different time quantities in quantum theory.
Mechanical Engineering In Uncertainties From Classical Approaches To Some Recent Developments
DOWNLOAD
Author :
language : en
Publisher: John Wiley & Sons
Release Date : 2021-04-01
Mechanical Engineering In Uncertainties From Classical Approaches To Some Recent Developments written by and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-04-01 with Science categories.
Considering the uncertainties in mechanical engineering in order to improve the performance of future products or systems is becoming a competitive advantage, sometimes even a necessity, when seeking to guarantee an increasingly high safety requirement. Mechanical Engineering in Uncertainties deals with modeling, quantification and propagation of uncertainties. It also examines how to take into account uncertainties through reliability analyses and optimization under uncertainty. The spectrum of the methods presented ranges from classical approaches to more recent developments and advanced methods. The methodologies are illustrated by concrete examples in various fields of mechanics (civil engineering, mechanical engineering and fluid mechanics). This book is intended for both (young) researchers and engineers interested in the treatment of uncertainties in mechanical engineering.
Mathematical Concepts Of Quantum Mechanics
DOWNLOAD
Author : Stephen J. Gustafson
language : en
Publisher: Springer Science & Business Media
Release Date : 2011-09-24
Mathematical Concepts Of Quantum Mechanics written by Stephen J. Gustafson and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-09-24 with Mathematics categories.
The book gives a streamlined introduction to quantum mechanics while describing the basic mathematical structures underpinning this discipline. Starting with an overview of key physical experiments illustrating the origin of the physical foundations, the book proceeds with a description of the basic notions of quantum mechanics and their mathematical content. It then makes its way to topics of current interest, specifically those in which mathematics plays an important role. The more advanced topics presented include many-body systems, modern perturbation theory, path integrals, the theory of resonances, quantum statistics, mean-field theory, second quantization, the theory of radiation (non-relativistic quantum electrodynamics), and the renormalization group. With different selections of chapters, the book can serve as a text for an introductory, intermediate, or advanced course in quantum mechanics. The last four chapters could also serve as an introductory course in quantum field theory.