[PDF] Meta Learning - eBooks Review

Meta Learning


Meta Learning
DOWNLOAD

Download Meta Learning PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Meta Learning book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Meta Learning


Meta Learning
DOWNLOAD
Author : Lan Zou
language : en
Publisher: Elsevier
Release Date : 2022-11-05

Meta Learning written by Lan Zou and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-11-05 with Computers categories.


Deep neural networks (DNNs) with their dense and complex algorithms provide real possibilities for Artificial General Intelligence (AGI). Meta-learning with DNNs brings AGI much closer: artificial agents solving intelligent tasks that human beings can achieve, even transcending what they can achieve. Meta-Learning: Theory, Algorithms and Applications shows how meta-learning in combination with DNNs advances towards AGI. Meta-Learning: Theory, Algorithms and Applications explains the fundamentals of meta-learning by providing answers to these questions: What is meta-learning?; why do we need meta-learning?; how are self-improved meta-learning mechanisms heading for AGI ?; how can we use meta-learning in our approach to specific scenarios? The book presents the background of seven mainstream paradigms: meta-learning, few-shot learning, deep learning, transfer learning, machine learning, probabilistic modeling, and Bayesian inference. It then explains important state-of-the-art mechanisms and their variants for meta-learning, including memory-augmented neural networks, meta-networks, convolutional Siamese neural networks, matching networks, prototypical networks, relation networks, LSTM meta-learning, model-agnostic meta-learning, and the Reptile algorithm. The book takes a deep dive into nearly 200 state-of-the-art meta-learning algorithms from top tier conferences (e.g. NeurIPS, ICML, CVPR, ACL, ICLR, KDD). It systematically investigates 39 categories of tasks from 11 real-world application fields: Computer Vision, Natural Language Processing, Meta-Reinforcement Learning, Healthcare, Finance and Economy, Construction Materials, Graphic Neural Networks, Program Synthesis, Smart City, Recommended Systems, and Climate Science. Each application field concludes by looking at future trends or by giving a summary of available resources. Meta-Learning: Theory, Algorithms and Applications is a great resource to understand the principles of meta-learning and to learn state-of-the-art meta-learning algorithms, giving the student, researcher and industry professional the ability to apply meta-learning for various novel applications. - A comprehensive overview of state-of-the-art meta-learning techniques and methods associated with deep neural networks together with a broad range of application areas - Coverage of nearly 200 state-of-the-art meta-learning algorithms, which are promoted by premier global AI conferences and journals, and 300 to 450 pieces of key research - Systematic and detailed exploration of the most crucial state-of-the-art meta-learning algorithm mechanisms: model-based, metric-based, and optimization-based - Provides solutions to the limitations of using deep learning and/or machine learning methods, particularly with small sample sizes and unlabeled data - Gives an understanding of how meta-learning acts as a stepping stone to Artificial General Intelligence in 39 categories of tasks from 11 real-world application fields



Metalearning


Metalearning
DOWNLOAD
Author : Pavel Brazdil
language : en
Publisher: Springer Science & Business Media
Release Date : 2008-11-26

Metalearning written by Pavel Brazdil and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-11-26 with Computers categories.


Metalearning is the study of principled methods that exploit metaknowledge to obtain efficient models and solutions by adapting machine learning and data mining processes. While the variety of machine learning and data mining techniques now available can, in principle, provide good model solutions, a methodology is still needed to guide the search for the most appropriate model in an efficient way. Metalearning provides one such methodology that allows systems to become more effective through experience. This book discusses several approaches to obtaining knowledge concerning the performance of machine learning and data mining algorithms. It shows how this knowledge can be reused to select, combine, compose and adapt both algorithms and models to yield faster, more effective solutions to data mining problems. It can thus help developers improve their algorithms and also develop learning systems that can improve themselves. The book will be of interest to researchers and graduate students in the areas of machine learning, data mining and artificial intelligence.



Automated Machine Learning


Automated Machine Learning
DOWNLOAD
Author : Frank Hutter
language : en
Publisher: Springer
Release Date : 2019-05-17

Automated Machine Learning written by Frank Hutter and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-05-17 with Computers categories.


This open access book presents the first comprehensive overview of general methods in Automated Machine Learning (AutoML), collects descriptions of existing systems based on these methods, and discusses the first series of international challenges of AutoML systems. The recent success of commercial ML applications and the rapid growth of the field has created a high demand for off-the-shelf ML methods that can be used easily and without expert knowledge. However, many of the recent machine learning successes crucially rely on human experts, who manually select appropriate ML architectures (deep learning architectures or more traditional ML workflows) and their hyperparameters. To overcome this problem, the field of AutoML targets a progressive automation of machine learning, based on principles from optimization and machine learning itself. This book serves as a point of entry into this quickly-developing field for researchers and advanced students alike, as well as providing a reference for practitioners aiming to use AutoML in their work.



Master Meta Learning


Master Meta Learning
DOWNLOAD
Author : Dr Arundhati Hoskeri
language : en
Publisher: Dr Arundhati G Hoskeri
Release Date : 2024-08-15

Master Meta Learning written by Dr Arundhati Hoskeri and has been published by Dr Arundhati G Hoskeri this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-08-15 with Education categories.


Do you think Meta-learning is only useful in artificial intelligence and machine learning? Are you feeling overwhelmed that, in spite of your best efforts, you are unable to retain all the information? Do you think meta-learning techniques are only relevant for high-achievers? Is meta-learning only applicable to academic subjects and students? Many believe that meta-learning is time-consuming and difficult to implement and it is only useful for students. But the reality is that in meta-learning, you will learn to address common challenges and turn them into opportunities crucial for success in any field. No doubt, meta-learning has recently gained more popularity, but it is an age-old concept that explores optimizing learning strategies and improving educational and learning outcomes. In this book, you'll discover the secrets to learning faster, remembering more, and mastering any subject with ease. Say goodbye to boring study sessions and hello to a whole new world of accelerated learning! It will take you on a journey to becoming a master of learning. Knowing how to learn is crucial for lifelong growth and adaptability. Meta-learning is not just a method but an art and science of Learning how to learn. It's about understanding how you learn, adapting to different situations, and constantly improving.



Meta Learning With Medical Imaging And Health Informatics Applications


Meta Learning With Medical Imaging And Health Informatics Applications
DOWNLOAD
Author : Hien Van Nguyen
language : en
Publisher: Academic Press
Release Date : 2022-09-24

Meta Learning With Medical Imaging And Health Informatics Applications written by Hien Van Nguyen and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-09-24 with Computers categories.


Meta-Learning, or learning to learn, has become increasingly popular in recent years. Instead of building AI systems from scratch for each machine learning task, Meta-Learning constructs computational mechanisms to systematically and efficiently adapt to new tasks. The meta-learning paradigm has great potential to address deep neural networks' fundamental challenges such as intensive data requirement, computationally expensive training, and limited capacity for transfer among tasks.This book provides a concise summary of Meta-Learning theories and their diverse applications in medical imaging and health informatics. It covers the unifying theory of meta-learning and its popular variants such as model-agnostic learning, memory augmentation, prototypical networks, and learning to optimize. The book brings together thought leaders from both machine learning and health informatics fields to discuss the current state of Meta-Learning, its relevance to medical imaging and health informatics, and future directions. - First book on applying Meta Learning to medical imaging - Pioneers in the field as contributing authors to explain the theory and its development - Has GitHub repository consisting of various code examples and documentation to help the audience to set up Meta-Learning algorithms for their applications quickly



Meta Learning Frameworks For Imaging Applications


Meta Learning Frameworks For Imaging Applications
DOWNLOAD
Author : Sharma, Ashok
language : en
Publisher: IGI Global
Release Date : 2023-09-28

Meta Learning Frameworks For Imaging Applications written by Sharma, Ashok and has been published by IGI Global this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-09-28 with Computers categories.


Meta-learning, or learning to learn, has been gaining popularity in recent years to adapt to new tasks systematically and efficiently in machine learning. In the book, Meta-Learning Frameworks for Imaging Applications, experts from the fields of machine learning and imaging come together to explore the current state of meta-learning and its application to medical imaging and health informatics. The book presents an overview of the meta-learning framework, including common versions such as model-agnostic learning, memory augmentation, prototype networks, and learning to optimize. It also discusses how meta-learning can be applied to address fundamental limitations of deep neural networks, such as high data demand, computationally expensive training, and limited ability for task transfer. One critical topic in imaging is image segmentation, and the book explores how a meta-learning-based framework can help identify the best image segmentation algorithm, which would be particularly beneficial in the healthcare domain. This book is relevant to healthcare institutes, e-commerce companies, and educational institutions, as well as professionals and practitioners in the intelligent system, computational data science, network applications, and biomedical applications fields. It is also useful for domain developers and project managers from diagnostic and pharmacy companies involved in the development of medical expert systems. Additionally, graduate and master students in intelligent systems, big data management, computational intelligent approaches, computer vision, and biomedical science can use this book for their final projects and specific courses.



Neural Machine Translation


Neural Machine Translation
DOWNLOAD
Author : Philipp Koehn
language : en
Publisher: Cambridge University Press
Release Date : 2020-06-18

Neural Machine Translation written by Philipp Koehn and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-06-18 with Computers categories.


Learn how to build machine translation systems with deep learning from the ground up, from basic concepts to cutting-edge research.



Hands On Meta Learning With Python


Hands On Meta Learning With Python
DOWNLOAD
Author : Sudharsan Ravichandiran
language : en
Publisher: Packt Publishing Ltd
Release Date : 2018-12-31

Hands On Meta Learning With Python written by Sudharsan Ravichandiran and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-12-31 with Computers categories.


Explore a diverse set of meta-learning algorithms and techniques to enable human-like cognition for your machine learning models using various Python frameworks Key FeaturesUnderstand the foundations of meta learning algorithmsExplore practical examples to explore various one-shot learning algorithms with its applications in TensorFlowMaster state of the art meta learning algorithms like MAML, reptile, meta SGDBook Description Meta learning is an exciting research trend in machine learning, which enables a model to understand the learning process. Unlike other ML paradigms, with meta learning you can learn from small datasets faster. Hands-On Meta Learning with Python starts by explaining the fundamentals of meta learning and helps you understand the concept of learning to learn. You will delve into various one-shot learning algorithms, like siamese, prototypical, relation and memory-augmented networks by implementing them in TensorFlow and Keras. As you make your way through the book, you will dive into state-of-the-art meta learning algorithms such as MAML, Reptile, and CAML. You will then explore how to learn quickly with Meta-SGD and discover how you can perform unsupervised learning using meta learning with CACTUs. In the concluding chapters, you will work through recent trends in meta learning such as adversarial meta learning, task agnostic meta learning, and meta imitation learning. By the end of this book, you will be familiar with state-of-the-art meta learning algorithms and able to enable human-like cognition for your machine learning models. What you will learnUnderstand the basics of meta learning methods, algorithms, and typesBuild voice and face recognition models using a siamese networkLearn the prototypical network along with its variantsBuild relation networks and matching networks from scratchImplement MAML and Reptile algorithms from scratch in PythonWork through imitation learning and adversarial meta learningExplore task agnostic meta learning and deep meta learningWho this book is for Hands-On Meta Learning with Python is for machine learning enthusiasts, AI researchers, and data scientists who want to explore meta learning as an advanced approach for training machine learning models. Working knowledge of machine learning concepts and Python programming is necessary.



Automated Machine Learning And Meta Learning For Multimedia


Automated Machine Learning And Meta Learning For Multimedia
DOWNLOAD
Author : Wenwu Zhu
language : en
Publisher: Springer Nature
Release Date : 2022-01-01

Automated Machine Learning And Meta Learning For Multimedia written by Wenwu Zhu and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-01-01 with Computers categories.


This book disseminates and promotes the recent research progress and frontier development on AutoML and meta-learning as well as their applications on computer vision, natural language processing, multimedia and data mining related fields. These are exciting and fast-growing research directions in the general field of machine learning. The authors advocate novel, high-quality research findings, and innovative solutions to the challenging problems in AutoML and meta-learning. This topic is at the core of the scope of artificial intelligence, and is attractive to audience from both academia and industry. This book is highly accessible to the whole machine learning community, including: researchers, students and practitioners who are interested in AutoML, meta-learning, and their applications in multimedia, computer vision, natural language processing and data mining related tasks. The book is self-contained and designed for introductory and intermediate audiences. No special prerequisite knowledge is required to read this book.



Continual And Reinforcement Learning For Edge Ai


Continual And Reinforcement Learning For Edge Ai
DOWNLOAD
Author : Hang Wang
language : en
Publisher: Springer Nature
Release Date : 2025-05-20

Continual And Reinforcement Learning For Edge Ai written by Hang Wang and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-05-20 with Computers categories.


This book provides a comprehensive introduction to continual and reinforcement learning for edge AI, which investigates how to build an AI agent that can continuously solve new learning tasks and enhance the AI at resource-limited edge devices. The authors introduce readers to practical frameworks and in-depth algorithmic foundations. The book surveys the recent advances in the area, coming from both academic researchers and industry professionals. The authors also present their own research findings on continual and reinforcement learning for edge AI. The book also covers the practical applications of the topic and identifies exciting future research opportunities.