[PDF] Metaheuristics In Machine Learning Theory And Applications - eBooks Review

Metaheuristics In Machine Learning Theory And Applications


Metaheuristics In Machine Learning Theory And Applications
DOWNLOAD

Download Metaheuristics In Machine Learning Theory And Applications PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Metaheuristics In Machine Learning Theory And Applications book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Metaheuristics In Machine Learning Theory And Applications


Metaheuristics In Machine Learning Theory And Applications
DOWNLOAD
Author : Diego Oliva
language : en
Publisher: Springer Nature
Release Date : 2021-07-13

Metaheuristics In Machine Learning Theory And Applications written by Diego Oliva and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-07-13 with Computers categories.


This book is a collection of the most recent approaches that combine metaheuristics and machine learning. Some of the methods considered in this book are evolutionary, swarm, machine learning, and deep learning. The chapters were classified based on the content; then, the sections are thematic. Different applications and implementations are included; in this sense, the book provides theory and practical content with novel machine learning and metaheuristic algorithms. The chapters were compiled using a scientific perspective. Accordingly, the book is primarily intended for undergraduate and postgraduate students of Science, Engineering, and Computational Mathematics and is useful in courses on Artificial Intelligence, Advanced Machine Learning, among others. Likewise, the book is useful for research from the evolutionary computation, artificial intelligence, and image processing communities.



Meta Heuristics


Meta Heuristics
DOWNLOAD
Author : Ibrahim H. Osman
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06

Meta Heuristics written by Ibrahim H. Osman and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Business & Economics categories.


Meta-heuristics have developed dramatically since their inception in the early 1980s. They have had widespread success in attacking a variety of practical and difficult combinatorial optimization problems. These families of approaches include, but are not limited to greedy random adaptive search procedures, genetic algorithms, problem-space search, neural networks, simulated annealing, tabu search, threshold algorithms, and their hybrids. They incorporate concepts based on biological evolution, intelligent problem solving, mathematical and physical sciences, nervous systems, and statistical mechanics. Since the 1980s, a great deal of effort has been invested in the field of combinatorial optimization theory in which heuristic algorithms have become an important area of research and applications. This volume is drawn from the first conference on Meta-Heuristics and contains 41 papers on the state-of-the-art in heuristic theory and applications. The book treats the following meta-heuristics and applications: Genetic Algorithms, Simulated Annealing, Tabu Search, Networks & Graphs, Scheduling and Control, TSP, and Vehicle Routing Problems. It represents research from the fields of Operations Research, Management Science, Artificial Intelligence and Computer Science.



Metaheuristic And Evolutionary Computation Algorithms And Applications


Metaheuristic And Evolutionary Computation Algorithms And Applications
DOWNLOAD
Author : Hasmat Malik
language : en
Publisher: Springer Nature
Release Date : 2020-10-08

Metaheuristic And Evolutionary Computation Algorithms And Applications written by Hasmat Malik and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-10-08 with Technology & Engineering categories.


This book addresses the principles and applications of metaheuristic approaches in engineering and related fields. The first part covers metaheuristics tools and techniques such as ant colony optimization and Tabu search, and their applications to several classes of optimization problems. In turn, the book’s second part focuses on a wide variety of metaheuristics applications in engineering and/or the applied sciences, e.g. in smart grids and renewable energy. In addition, the simulation codes for the problems discussed are included in an appendix for ready reference. Intended for researchers aspiring to learn and apply metaheuristic techniques, and gathering contributions by prominent experts in the field, the book offers readers an essential introduction to metaheuristics, its theoretical aspects and applications.



Metaheuristic Optimization Nature Inspired Algorithms Swarm And Computational Intelligence Theory And Applications


Metaheuristic Optimization Nature Inspired Algorithms Swarm And Computational Intelligence Theory And Applications
DOWNLOAD
Author : Modestus O. Okwu
language : en
Publisher: Springer Nature
Release Date : 2020-11-13

Metaheuristic Optimization Nature Inspired Algorithms Swarm And Computational Intelligence Theory And Applications written by Modestus O. Okwu and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-11-13 with Technology & Engineering categories.


This book exemplifies how algorithms are developed by mimicking nature. Classical techniques for solving day-to-day problems is time-consuming and cannot address complex problems. Metaheuristic algorithms are nature-inspired optimization techniques for solving real-life complex problems. This book emphasizes the social behaviour of insects, animals and other natural entities, in terms of converging power and benefits. Major nature-inspired algorithms discussed in this book include the bee colony algorithm, ant colony algorithm, grey wolf optimization algorithm, whale optimization algorithm, firefly algorithm, bat algorithm, ant lion optimization algorithm, grasshopper optimization algorithm, butterfly optimization algorithm and others. The algorithms have been arranged in chapters to help readers gain better insight into nature-inspired systems and swarm intelligence. All the MATLAB codes have been provided in the appendices of the book to enable readers practice how to solve examples included in all sections. This book is for experts in Engineering and Applied Sciences, Natural and Formal Sciences, Economics, Humanities and Social Sciences.



Applications Of Hybrid Metaheuristic Algorithms For Image Processing


Applications Of Hybrid Metaheuristic Algorithms For Image Processing
DOWNLOAD
Author : Diego Oliva
language : en
Publisher: Springer
Release Date : 2020-03-28

Applications Of Hybrid Metaheuristic Algorithms For Image Processing written by Diego Oliva and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-03-28 with Technology & Engineering categories.


This book presents a collection of the most recent hybrid methods for image processing. The algorithms included consider evolutionary, swarm, machine learning and deep learning. The respective chapters explore different areas of image processing, from image segmentation to the recognition of objects using complex approaches and medical applications. The book also discusses the theory of the methodologies used to provide an overview of the applications of these tools in image processing. The book is primarily intended for undergraduate and postgraduate students of science, engineering and computational mathematics, and can also be used for courses on artificial intelligence, advanced image processing, and computational intelligence. Further, it is a valuable resource for researchers from the evolutionary computation, artificial intelligence and image processing communities.



Metaheuristics For Machine Learning


Metaheuristics For Machine Learning
DOWNLOAD
Author : Kanak Kalita
language : en
Publisher: John Wiley & Sons
Release Date : 2024-03-28

Metaheuristics For Machine Learning written by Kanak Kalita and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-03-28 with Computers categories.


METAHEURISTICS for MACHINE LEARNING The book unlocks the power of nature-inspired optimization in machine learning and presents a comprehensive guide to cutting-edge algorithms, interdisciplinary insights, and real-world applications. The field of metaheuristic optimization algorithms is experiencing rapid growth, both in academic research and industrial applications. These nature-inspired algorithms, which draw on phenomena like evolution, swarm behavior, and neural systems, have shown remarkable efficiency in solving complex optimization problems. With advancements in machine learning and artificial intelligence, the application of metaheuristic optimization techniques has expanded, demonstrating significant potential in optimizing machine learning models, hyperparameter tuning, and feature selection, among other use-cases. In the industrial landscape, these techniques are becoming indispensable for solving real-world problems in sectors ranging from healthcare to cybersecurity and sustainability. Businesses are incorporating metaheuristic optimization into machine learning workflows to improve decision-making, automate processes, and enhance system performance. As the boundaries of what is computationally possible continue to expand, the integration of metaheuristic optimization and machine learning represents a pioneering frontier in computational intelligence, making this book a timely resource for anyone involved in this interdisciplinary field. Metaheuristics for Machine Learning: Algorithms and Applications serves as a comprehensive guide to the intersection of nature-inspired optimization and machine learning. Authored by leading experts, this book seamlessly integrates insights from computer science, biology, and mathematics to offer a panoramic view of the latest advancements in metaheuristic algorithms. You’ll find detailed yet accessible discussions of algorithmic theory alongside real-world case studies that demonstrate their practical applications in machine learning optimization. Perfect for researchers, practitioners, and students, this book provides cutting-edge content with a focus on applicability and interdisciplinary knowledge. Whether you aim to optimize complex systems, delve into neural networks, or enhance predictive modeling, this book arms you with the tools and understanding you need to tackle challenges efficiently. Equip yourself with this essential resource and navigate the ever-evolving landscape of machine learning and optimization with confidence. Audience The book is aimed at a broad audience encompassing researchers, practitioners, and students in the fields of computer science, data science, engineering, and mathematics. The detailed but accessible content makes it a must-have for both academia and industry professionals interested in the optimization aspects of machine learning algorithms.



Constraint Handling In Metaheuristics And Applications


Constraint Handling In Metaheuristics And Applications
DOWNLOAD
Author : Anand J. Kulkarni
language : en
Publisher: Springer Nature
Release Date : 2021-04-12

Constraint Handling In Metaheuristics And Applications written by Anand J. Kulkarni and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-04-12 with Computers categories.


This book aims to discuss the core and underlying principles and analysis of the different constraint handling approaches. The main emphasis of the book is on providing an enriched literature on mathematical modelling of the test as well as real-world problems with constraints, and further development of generalized constraint handling techniques. These techniques may be incorporated in suitable metaheuristics providing a solid optimized solution to the problems and applications being addressed. The book comprises original contributions with an aim to develop and discuss generalized constraint handling approaches/techniques for the metaheuristics and/or the applications being addressed. A variety of novel as well as modified and hybridized techniques have been discussed in the book. The conceptual as well as the mathematical level in all the chapters is well within the grasp of the scientists as well as the undergraduate and graduate students from the engineering and computer science streams. The reader is encouraged to have basic knowledge of probability and mathematical analysis and optimization. The book also provides critical review of the contemporary constraint handling approaches. The contributions of the book may further help to explore new avenues leading towards multidisciplinary research discussions. This book is a complete reference for engineers, scientists, and students studying/working in the optimization, artificial intelligence (AI), or computational intelligence arena.



Recent Advances In Hybrid Metaheuristics For Data Clustering


Recent Advances In Hybrid Metaheuristics For Data Clustering
DOWNLOAD
Author : Sourav De
language : en
Publisher: John Wiley & Sons
Release Date : 2020-06-02

Recent Advances In Hybrid Metaheuristics For Data Clustering written by Sourav De and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-06-02 with Computers categories.


An authoritative guide to an in-depth analysis of various state-of-the-art data clustering approaches using a range of computational intelligence techniques Recent Advances in Hybrid Metaheuristics for Data Clustering offers a guide to the fundamentals of various metaheuristics and their application to data clustering. Metaheuristics are designed to tackle complex clustering problems where classical clustering algorithms have failed to be either effective or efficient. The authors noted experts on the topic provide a text that can aid in the design and development of hybrid metaheuristics to be applied to data clustering. The book includes performance analysis of the hybrid metaheuristics in relationship to their conventional counterparts. In addition to providing a review of data clustering, the authors include in-depth analysis of different optimization algorithms. The text offers a step-by-step guide in the build-up of hybrid metaheuristics and to enhance comprehension. In addition, the book contains a range of real-life case studies and their applications. This important text: Includes performance analysis of the hybrid metaheuristics as related to their conventional counterparts Offers an in-depth analysis of a range of optimization algorithms Highlights a review of data clustering Contains a detailed overview of different standard metaheuristics in current use Presents a step-by-step guide to the build-up of hybrid metaheuristics Offers real-life case studies and applications Written for researchers, students and academics in computer science, mathematics, and engineering, Recent Advances in Hybrid Metaheuristics for Data Clustering provides a text that explores the current data clustering approaches using a range of computational intelligence techniques.



Hybrid Quantum Metaheuristics


Hybrid Quantum Metaheuristics
DOWNLOAD
Author : Siddhartha Bhattacharyya
language : en
Publisher: CRC Press
Release Date : 2022-05-07

Hybrid Quantum Metaheuristics written by Siddhartha Bhattacharyya and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-05-07 with Technology & Engineering categories.


The reference text introduces the principles of quantum mechanics to evolve hybrid metaheuristics-based optimization techniques useful for real world engineering and scientific problems. The text covers advances and trends in methodological approaches, theoretical studies, mathematical and applied techniques related to hybrid quantum metaheuristics and their applications to engineering problems. The book will be accompanied by additional resources including video demonstration for each chapter. It will be a useful text for graduate students and professional in the field of electrical engineering, electronics and communications engineering, and computer science engineering, this text: Discusses quantum mechanical principles in detail. Emphasizes the recent and upcoming hybrid quantum metaheuristics in a comprehensive manner. Provides comparative statistical test analysis with conventional hybrid metaheuristics. Highlights real-life case studies, applications, and video demonstrations.



Optimization In Machine Learning And Applications


Optimization In Machine Learning And Applications
DOWNLOAD
Author :
language : en
Publisher:
Release Date : 2020

Optimization In Machine Learning And Applications written by and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020 with Machine learning categories.


This book discusses one of the major applications of artificial intelligence: the use of machine learning to extract useful information from multimodal data. It discusses the optimization methods that help minimize the error in developing patterns and classifications, which further helps improve prediction and decision-making. The book also presents formulations of real-world machine learning problems, and discusses AI solution methodologies as standalone or hybrid approaches. Lastly, it proposes novel metaheuristic methods to solve complex machine learning problems. Featuring valuable insights, the book helps readers explore new avenues leading toward multidisciplinary research discussions.