Methods In Equivariant Bifurcations And Dynamical Systems

DOWNLOAD
Download Methods In Equivariant Bifurcations And Dynamical Systems PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Methods In Equivariant Bifurcations And Dynamical Systems book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Methods In Equivariant Bifurcations And Dynamical Systems
DOWNLOAD
Author : Pascal Chossat
language : en
Publisher: World Scientific Publishing Company Incorporated
Release Date : 2000
Methods In Equivariant Bifurcations And Dynamical Systems written by Pascal Chossat and has been published by World Scientific Publishing Company Incorporated this book supported file pdf, txt, epub, kindle and other format this book has been release on 2000 with Mathematics categories.
This invaluable book presents the state-of-the-art in equivariant bifurcation and dynamical systems theory, with a special emphasis on the computational aspects, PDE's and applications. This theory provides powerful tools for the analysis of spontaneous symmetry-breaking phenomena, in space as well as in time. Examples of applications from various areas of science are provided and analyzed.
Methods In Equivariant Bifurcations And Dynamical Systems
DOWNLOAD
Author : Pascal Chossat
language : en
Publisher: World Scientific Publishing Company
Release Date : 2000-02-28
Methods In Equivariant Bifurcations And Dynamical Systems written by Pascal Chossat and has been published by World Scientific Publishing Company this book supported file pdf, txt, epub, kindle and other format this book has been release on 2000-02-28 with Science categories.
This invaluable book presents a comprehensive introduction to bifurcation theory in the presence of symmetry, an applied mathematical topic which has developed considerably over the past twenty years and has been very successful in analysing and predicting pattern formation and other critical phenomena in most areas of science where nonlinear models are involved, like fluid flow instabilities, chemical waves, elasticity and population dynamics.The book has two aims. One is to expound the mathematical methods of equivariant bifurcation theory. Beyond the classical bifurcation tools, such as center manifold and normal form reductions, the presence of symmetry requires the introduction of the algebraic and geometric formalism of Lie group theory and transformation group methods. For the first time, all these methods in equivariant bifurcations are presented in a coherent and self-consistent way in a book.The other aim is to present the most recent ideas and results in this theory, in relation to applications. This includes bifurcations of relative equilibria and relative periodic orbits for compact and noncompact group actions, heteroclinic cycles and forced symmetry-breaking perturbations. Although not all recent contributions could be included and a choice had to be made, a rather complete description of these new developments is provided. At the end of every chapter, exercises are offered to the reader.
Methods In Equivariant Bifurcations And Dynamical Systems
DOWNLOAD
Author : Pascal Chossat
language : en
Publisher:
Release Date : 2000
Methods In Equivariant Bifurcations And Dynamical Systems written by Pascal Chossat and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2000 with categories.
Numerical Methods For Bifurcations Of Dynamical Equilibria
DOWNLOAD
Author : Willy J. F. Govaerts
language : en
Publisher: SIAM
Release Date : 2000-01-01
Numerical Methods For Bifurcations Of Dynamical Equilibria written by Willy J. F. Govaerts and has been published by SIAM this book supported file pdf, txt, epub, kindle and other format this book has been release on 2000-01-01 with Mathematics categories.
Dynamical systems arise in all fields of applied mathematics. The author focuses on the description of numerical methods for the detection, computation, and continuation of equilibria and bifurcation points of equilibria of dynamical systems. This subfield has the particular attraction of having links with the geometric theory of differential equations, numerical analysis, and linear algebra.
Numerical Continuation Methods For Dynamical Systems
DOWNLOAD
Author : Bernd Krauskopf
language : en
Publisher: Springer
Release Date : 2007-11-06
Numerical Continuation Methods For Dynamical Systems written by Bernd Krauskopf and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-11-06 with Science categories.
Path following in combination with boundary value problem solvers has emerged as a continuing and strong influence in the development of dynamical systems theory and its application. It is widely acknowledged that the software package AUTO - developed by Eusebius J. Doedel about thirty years ago and further expanded and developed ever since - plays a central role in the brief history of numerical continuation. This book has been compiled on the occasion of Sebius Doedel's 60th birthday. Bringing together for the first time a large amount of material in a single, accessible source, it is hoped that the book will become the natural entry point for researchers in diverse disciplines who wish to learn what numerical continuation techniques can achieve. The book opens with a foreword by Herbert B. Keller and lecture notes by Sebius Doedel himself that introduce the basic concepts of numerical bifurcation analysis. The other chapters by leading experts discuss continuation for various types of systems and objects and showcase examples of how numerical bifurcation analysis can be used in concrete applications. Topics that are treated include: interactive continuation tools, higher-dimensional continuation, the computation of invariant manifolds, and continuation techniques for slow-fast systems, for symmetric Hamiltonian systems, for spatially extended systems and for systems with delay. Three chapters review physical applications: the dynamics of a SQUID, global bifurcations in laser systems, and dynamics and bifurcations in electronic circuits.
Computer Algebra Methods For Equivariant Dynamical Systems
DOWNLOAD
Author : Karin Gatermann
language : en
Publisher: Lecture Notes in Mathematics
Release Date : 2000-03-27
Computer Algebra Methods For Equivariant Dynamical Systems written by Karin Gatermann and has been published by Lecture Notes in Mathematics this book supported file pdf, txt, epub, kindle and other format this book has been release on 2000-03-27 with Computers categories.
This series reports on new developments in mathematical research and teaching - quickly, informally and at a high level. The type of material considered for publication includes 1. Research monographs 2. Lectures on a new field or presentations of a new angle in a classical field 3. Summer schools and intensive courses on topics of current research. Texts which are out of print but still in demand may also be considered. The timeliness of a manuscript is sometimes more important than its form, which might be preliminary or tentative. Details of the editorial policy can be found on the inside front-cover of a current volume. Manuscripts should be submitted in camera-ready form according to Springer-Verlag's specification: technical instructions will be sent on request. TEX macros may be found at: http://www.springer.de/math/authors/b-tex.html Select the version of TEX you use and then click on "Monographs". A subject index should be included. We recommend contacting the publisher or the series editors at an early stage of your project. Addresses are given on the inside back-cover.
Handbook Of Dynamical Systems
DOWNLOAD
Author : H. Broer
language : en
Publisher: Elsevier
Release Date : 2010-11-10
Handbook Of Dynamical Systems written by H. Broer and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-11-10 with Mathematics categories.
In this volume, the authors present a collection of surveys on various aspects of the theory of bifurcations of differentiable dynamical systems and related topics. By selecting these subjects, they focus on those developments from which research will be active in the coming years. The surveys are intended to educate the reader on the recent literature on the following subjects: transversality and generic properties like the various forms of the so-called Kupka-Smale theorem, the Closing Lemma and generic local bifurcations of functions (so-called catastrophe theory) and generic local bifurcations in 1-parameter families of dynamical systems, and notions of structural stability and moduli. - Covers recent literature on various topics related to the theory of bifurcations of differentiable dynamical systems - Highlights developments that are the foundation for future research in this field - Provides material in the form of surveys, which are important tools for introducing the bifurcations of differentiable dynamical systems
Handbook Of Differential Equations Ordinary Differential Equations
DOWNLOAD
Author : Flaviano Battelli
language : en
Publisher: Elsevier
Release Date : 2008-08-19
Handbook Of Differential Equations Ordinary Differential Equations written by Flaviano Battelli and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-08-19 with Mathematics categories.
This handbook is the fourth volume in a series of volumes devoted to self-contained and up-to-date surveys in the theory of ordinary differential equations, with an additional effort to achieve readability for mathematicians and scientists from other related fields so that the chapters have been made accessible to a wider audience. - Covers a variety of problems in ordinary differential equations - Pure mathematical and real-world applications - Written for mathematicians and scientists of many related fields
Local Bifurcations Center Manifolds And Normal Forms In Infinite Dimensional Dynamical Systems
DOWNLOAD
Author : Mariana Haragus
language : en
Publisher: Springer Science & Business Media
Release Date : 2010-11-23
Local Bifurcations Center Manifolds And Normal Forms In Infinite Dimensional Dynamical Systems written by Mariana Haragus and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-11-23 with Mathematics categories.
An extension of different lectures given by the authors, Local Bifurcations, Center Manifolds, and Normal Forms in Infinite Dimensional Dynamical Systems provides the reader with a comprehensive overview of these topics. Starting with the simplest bifurcation problems arising for ordinary differential equations in one- and two-dimensions, this book describes several tools from the theory of infinite dimensional dynamical systems, allowing the reader to treat more complicated bifurcation problems, such as bifurcations arising in partial differential equations. Attention is restricted to the study of local bifurcations with a focus upon the center manifold reduction and the normal form theory; two methods that have been widely used during the last decades. Through use of step-by-step examples and exercises, a number of possible applications are illustrated, and allow the less familiar reader to use this reduction method by checking some clear assumptions. Written by recognised experts in the field of center manifold and normal form theory this book provides a much-needed graduate level text on bifurcation theory, center manifolds and normal form theory. It will appeal to graduate students and researchers working in dynamical system theory.
Dynamics And Bifurcation In Networks
DOWNLOAD
Author : Martin Golubitsky
language : en
Publisher: SIAM
Release Date : 2023-04-24
Dynamics And Bifurcation In Networks written by Martin Golubitsky and has been published by SIAM this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-04-24 with Mathematics categories.
In recent years, there has been an explosion of interest in network-based modeling in many branches of science. This book synthesizes some of the common features of many such models, providing a general framework analogous to the modern theory of nonlinear dynamical systems. How networks lead to behavior not typical in a general dynamical system and how the architecture and symmetry of the network influence this behavior are the book’s main themes. Dynamics and Bifurcation in Networks: Theory and Applications of Coupled Differential Equations is the first book to describe the formalism for network dynamics developed over the past 20 years. In it, the authors introduce a definition of a network and the associated class of “admissible” ordinary differential equations, in terms of a directed graph whose nodes represent component dynamical systems and whose arrows represent couplings between these systems. They also develop connections between network architecture and the typical dynamics and bifurcations of these equations and discuss applications of this formalism to various areas of science, including gene regulatory networks, animal locomotion, decision-making, homeostasis, binocular rivalry, and visual illusions. This book will be of interest to scientific researchers in any area that uses network models, which includes many parts of biology, physics, chemistry, computer science, electrical and electronic engineering, psychology, and sociology.