Methods Of Information Geometry

DOWNLOAD
Download Methods Of Information Geometry PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Methods Of Information Geometry book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Methods Of Information Geometry
DOWNLOAD
Author : Shun-ichi Amari
language : en
Publisher: American Mathematical Soc.
Release Date : 2000
Methods Of Information Geometry written by Shun-ichi Amari and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2000 with Mathematics categories.
Information geometry provides the mathematical sciences with a new framework of analysis. It has emerged from the investigation of the natural differential geometric structure on manifolds of probability distributions, which consists of a Riemannian metric defined by the Fisher information and a one-parameter family of affine connections called the $\alpha$-connections. The duality between the $\alpha$-connection and the $(-\alpha)$-connection together with the metric play an essential role in this geometry. This kind of duality, having emerged from manifolds of probability distributions, is ubiquitous, appearing in a variety of problems which might have no explicit relation to probability theory. Through the duality, it is possible to analyze various fundamental problems in a unified perspective. The first half of this book is devoted to a comprehensive introduction to the mathematical foundation of information geometry, including preliminaries from differential geometry, the geometry of manifolds or probability distributions, and the general theory of dual affine connections.The second half of the text provides an overview of many areas of applications, such as statistics, linear systems, information theory, quantum mechanics, convex analysis, neural networks, and affine differential geometry. The book can serve as a suitable text for a topics course for advanced undergraduates and graduate students.
Information Geometry And Its Applications
DOWNLOAD
Author : Shun-ichi Amari
language : en
Publisher: Springer
Release Date : 2016-02-02
Information Geometry And Its Applications written by Shun-ichi Amari and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-02-02 with Mathematics categories.
This is the first comprehensive book on information geometry, written by the founder of the field. It begins with an elementary introduction to dualistic geometry and proceeds to a wide range of applications, covering information science, engineering, and neuroscience. It consists of four parts, which on the whole can be read independently. A manifold with a divergence function is first introduced, leading directly to dualistic structure, the heart of information geometry. This part (Part I) can be apprehended without any knowledge of differential geometry. An intuitive explanation of modern differential geometry then follows in Part II, although the book is for the most part understandable without modern differential geometry. Information geometry of statistical inference, including time series analysis and semiparametric estimation (the Neyman–Scott problem), is demonstrated concisely in Part III. Applications addressed in Part IV include hot current topics in machine learning, signal processing, optimization, and neural networks. The book is interdisciplinary, connecting mathematics, information sciences, physics, and neurosciences, inviting readers to a new world of information and geometry. This book is highly recommended to graduate students and researchers who seek new mathematical methods and tools useful in their own fields.
Information Geometry
DOWNLOAD
Author : Nihat Ay
language : en
Publisher: Springer
Release Date : 2017-08-25
Information Geometry written by Nihat Ay and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-08-25 with Mathematics categories.
The book provides a comprehensive introduction and a novel mathematical foundation of the field of information geometry with complete proofs and detailed background material on measure theory, Riemannian geometry and Banach space theory. Parametrised measure models are defined as fundamental geometric objects, which can be both finite or infinite dimensional. Based on these models, canonical tensor fields are introduced and further studied, including the Fisher metric and the Amari-Chentsov tensor, and embeddings of statistical manifolds are investigated. This novel foundation then leads to application highlights, such as generalizations and extensions of the classical uniqueness result of Chentsov or the Cramér-Rao inequality. Additionally, several new application fields of information geometry are highlighted, for instance hierarchical and graphical models, complexity theory, population genetics, or Markov Chain Monte Carlo. The book will be of interest to mathematicians who are interested in geometry, information theory, or the foundations of statistics, to statisticians as well as to scientists interested in the mathematical foundations of complex systems.
Geometric Structures Of Statistical Physics Information Geometry And Learning
DOWNLOAD
Author : Frédéric Barbaresco
language : en
Publisher: Springer Nature
Release Date : 2021-06-27
Geometric Structures Of Statistical Physics Information Geometry And Learning written by Frédéric Barbaresco and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-06-27 with Mathematics categories.
Machine learning and artificial intelligence increasingly use methodological tools rooted in statistical physics. Conversely, limitations and pitfalls encountered in AI question the very foundations of statistical physics. This interplay between AI and statistical physics has been attested since the birth of AI, and principles underpinning statistical physics can shed new light on the conceptual basis of AI. During the last fifty years, statistical physics has been investigated through new geometric structures allowing covariant formalization of the thermodynamics. Inference methods in machine learning have begun to adapt these new geometric structures to process data in more abstract representation spaces. This volume collects selected contributions on the interplay of statistical physics and artificial intelligence. The aim is to provide a constructive dialogue around a common foundation to allow the establishment of new principles and laws governing these two disciplines in a unified manner. The contributions were presented at the workshop on the Joint Structures and Common Foundation of Statistical Physics, Information Geometry and Inference for Learning which was held in Les Houches in July 2020. The various theoretical approaches are discussed in the context of potential applications in cognitive systems, machine learning, signal processing.
Geometric Science Of Information
DOWNLOAD
Author : Frank Nielsen
language : en
Publisher: Springer Nature
Release Date : 2021-07-14
Geometric Science Of Information written by Frank Nielsen and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-07-14 with Computers categories.
This book constitutes the proceedings of the 5th International Conference on Geometric Science of Information, GSI 2021, held in Paris, France, in July 2021. The 98 papers presented in this volume were carefully reviewed and selected from 125 submissions. They cover all the main topics and highlights in the domain of geometric science of information, including information geometry manifolds of structured data/information and their advanced applications. The papers are organized in the following topics: Probability and statistics on Riemannian Manifolds; sub-Riemannian geometry and neuromathematics; shapes spaces; geometry of quantum states; geometric and structure preserving discretizations; information geometry in physics; Lie group machine learning; geometric and symplectic methods for hydrodynamical models; harmonic analysis on Lie groups; statistical manifold and Hessian information geometry; geometric mechanics; deformed entropy, cross-entropy, and relative entropy; transformation information geometry; statistics, information and topology; geometric deep learning; topological and geometrical structures in neurosciences; computational information geometry; manifold and optimization; divergence statistics; optimal transport and learning; and geometric structures in thermodynamics and statistical physics.
Information Geometry And Population Genetics
DOWNLOAD
Author : Julian Hofrichter
language : en
Publisher: Springer
Release Date : 2017-02-23
Information Geometry And Population Genetics written by Julian Hofrichter and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-02-23 with Mathematics categories.
The present monograph develops a versatile and profound mathematical perspective of the Wright--Fisher model of population genetics. This well-known and intensively studied model carries a rich and beautiful mathematical structure, which is uncovered here in a systematic manner. In addition to approaches by means of analysis, combinatorics and PDE, a geometric perspective is brought in through Amari's and Chentsov's information geometry. This concept allows us to calculate many quantities of interest systematically; likewise, the employed global perspective elucidates the stratification of the model in an unprecedented manner. Furthermore, the links to statistical mechanics and large deviation theory are explored and developed into powerful tools. Altogether, the manuscript provides a solid and broad working basis for graduate students and researchers interested in this field.
Differential Geometrical Methods In Statistics
DOWNLOAD
Author : Shun-ichi Amari
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
Differential Geometrical Methods In Statistics written by Shun-ichi Amari and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.
From the reviews: "In this Lecture Note volume the author describes his differential-geometric approach to parametrical statistical problems summarizing the results he had published in a series of papers in the last five years. The author provides a geometric framework for a special class of test and estimation procedures for curved exponential families. ... ... The material and ideas presented in this volume are important and it is recommended to everybody interested in the connection between statistics and geometry ..." #Metrika#1 "More than hundred references are given showing the growing interest in differential geometry with respect to statistics. The book can only strongly be recommended to a geodesist since it offers many new insights into statistics on a familiar ground." #Manuscripta Geodaetica#2
Geometric Methods And Applications
DOWNLOAD
Author : Jean Gallier
language : en
Publisher: Springer Science & Business Media
Release Date : 2011-06-04
Geometric Methods And Applications written by Jean Gallier and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-06-04 with Mathematics categories.
This book is an introduction to the fundamental concepts and tools needed for solving problems of a geometric nature using a computer. It attempts to fill the gap between standard geometry books, which are primarily theoretical, and applied books on computer graphics, computer vision, robotics, or machine learning. This book covers the following topics: affine geometry, projective geometry, Euclidean geometry, convex sets, SVD and principal component analysis, manifolds and Lie groups, quadratic optimization, basics of differential geometry, and a glimpse of computational geometry (Voronoi diagrams and Delaunay triangulations). Some practical applications of the concepts presented in this book include computer vision, more specifically contour grouping, motion interpolation, and robot kinematics. In this extensively updated second edition, more material on convex sets, Farkas’s lemma, quadratic optimization and the Schur complement have been added. The chapter on SVD has been greatly expanded and now includes a presentation of PCA. The book is well illustrated and has chapter summaries and a large number of exercises throughout. It will be of interest to a wide audience including computer scientists, mathematicians, and engineers. Reviews of first edition: "Gallier's book will be a useful source for anyone interested in applications of geometrical methods to solve problems that arise in various branches of engineering. It may help to develop the sophisticated concepts from the more advanced parts of geometry into useful tools for applications." (Mathematical Reviews, 2001) "...it will be useful as a reference book for postgraduates wishing to find the connection between their current problem and the underlying geometry." (The Australian Mathematical Society, 2001)
Geometric Structures Of Information
DOWNLOAD
Author : Frank Nielsen
language : en
Publisher: Springer
Release Date : 2018-11-29
Geometric Structures Of Information written by Frank Nielsen and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-11-29 with Technology & Engineering categories.
This book focuses on information geometry manifolds of structured data/information and their advanced applications featuring new and fruitful interactions between several branches of science: information science, mathematics and physics. It addresses interrelations between different mathematical domains like shape spaces, probability/optimization & algorithms on manifolds, relational and discrete metric spaces, computational and Hessian information geometry, algebraic/infinite dimensional/Banach information manifolds, divergence geometry, tensor-valued morphology, optimal transport theory, manifold & topology learning, and applications like geometries of audio-processing, inverse problems and signal processing. The book collects the most important contributions to the conference GSI’2017 – Geometric Science of Information.
Modern Geometry Methods And Applications
DOWNLOAD
Author : B.A. Dubrovin
language : en
Publisher: Springer
Release Date : 1984-03-16
Modern Geometry Methods And Applications written by B.A. Dubrovin and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 1984-03-16 with Mathematics categories.
manifolds, transformation groups, and Lie algebras, as well as the basic concepts of visual topology. It was also agreed that the course should be given in as simple and concrete a language as possible, and that wherever practic able the terminology should be that used by physicists. Thus it was along these lines that the archetypal course was taught. It was given more permanent form as duplicated lecture notes published under the auspices of Moscow State University as: Differential Geometry, Parts I and II, by S. P. Novikov, Division of Mechanics, Moscow State University, 1972. Subsequently various parts of the course were altered, and new topics added. This supplementary material was published (also in duplicated form) as Differential Geometry, Part III, by S. P. Novikov and A. T. Fomenko, Division of Mechanics, Moscow State University, 1974. The present book is the outcome of a reworking, re-ordering, and ex tensive elaboration of the above-mentioned lecture notes. It is the authors' view that it will serve as a basic text from which the essentials for a course in modern geometry may be easily extracted. To S. P. Novikov are due the original conception and the overall plan of the book. The work of organizing the material contained in the duplicated lecture notes in accordance with this plan was carried out by B. A. Dubrovin.