Metric Embeddings

DOWNLOAD
Download Metric Embeddings PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Metric Embeddings book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Metric Embeddings
DOWNLOAD
Author : Mikhail I. Ostrovskii
language : en
Publisher: Walter de Gruyter
Release Date : 2013-06-26
Metric Embeddings written by Mikhail I. Ostrovskii and has been published by Walter de Gruyter this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-06-26 with Mathematics categories.
Embeddings of discrete metric spaces into Banach spaces recently became an important tool in computer science and topology. The purpose of the book is to present some of the most important techniques and results, mostly on bilipschitz and coarse embeddings. The topics include: (1) Embeddability of locally finite metric spaces into Banach spaces is finitely determined; (2) Constructions of embeddings; (3) Distortion in terms of Poincaré inequalities; (4) Constructions of families of expanders and of families of graphs with unbounded girth and lower bounds on average degrees; (5) Banach spaces which do not admit coarse embeddings of expanders; (6) Structure of metric spaces which are not coarsely embeddable into a Hilbert space; (7) Applications of Markov chains to embeddability problems; (8) Metric characterizations of properties of Banach spaces; (9) Lipschitz free spaces. Substantial part of the book is devoted to a detailed presentation of relevant results of Banach space theory and graph theory. The final chapter contains a list of open problems. Extensive bibliography is also included. Each chapter, except the open problems chapter, contains exercises and a notes and remarks section containing references, discussion of related results, and suggestions for further reading. The book will help readers to enter and to work in a very rapidly developing area having many important connections with different parts of mathematics and computer science.
Embeddings Of Finite Metrics
DOWNLOAD
Author : Anupam Gupta
language : en
Publisher:
Release Date : 2000
Embeddings Of Finite Metrics written by Anupam Gupta and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2000 with categories.
Isometric Embeddings Of Riemannian And Pseudo Riemannian Manifolds
DOWNLOAD
Author : Robert Everist Greene
language : en
Publisher: American Mathematical Soc.
Release Date : 1970
Isometric Embeddings Of Riemannian And Pseudo Riemannian Manifolds written by Robert Everist Greene and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 1970 with Embeddings (Mathematics) categories.
Embeddings And Extensions In Analysis
DOWNLOAD
Author : J.H. Wells
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
Embeddings And Extensions In Analysis written by J.H. Wells and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.
The object of this book is a presentation of the major results relating to two geometrically inspired problems in analysis. One is that of determining which metric spaces can be isometrically embedded in a Hilbert space or, more generally, P in an L space; the other asks for conditions on a pair of metric spaces which will ensure that every contraction or every Lipschitz-Holder map from a subset of X into Y is extendable to a map of the same type from X into Y. The initial work on isometric embedding was begun by K. Menger [1928] with his metric investigations of Euclidean geometries and continued, in its analytical formulation, by I. J. Schoenberg [1935] in a series of papers of classical elegance. The problem of extending Lipschitz-Holder and contraction maps was first treated by E. J. McShane and M. D. Kirszbraun [1934]. Following a period of relative inactivity, attention was again drawn to these two problems by G. Minty's work on non-linear monotone operators in Hilbert space [1962]; by S. Schonbeck's fundamental work in characterizing those pairs (X,Y) of Banach spaces for which extension of contractions is always possible [1966]; and by the generalization of many of Schoenberg's embedding theorems to the P setting of L spaces by Bretagnolle, Dachuna Castelle and Krivine [1966].
Tractability
DOWNLOAD
Author : Lucas Bordeaux
language : en
Publisher: Cambridge University Press
Release Date : 2014-02-06
Tractability written by Lucas Bordeaux and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-02-06 with Computers categories.
An overview of the techniques developed to circumvent computational intractability, a key challenge in many areas of computer science.
Dissimilarity Representation For Pattern Recognition The Foundations And Applications
DOWNLOAD
Author : Robert P W Duin
language : en
Publisher: World Scientific
Release Date : 2005-11-22
Dissimilarity Representation For Pattern Recognition The Foundations And Applications written by Robert P W Duin and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2005-11-22 with Computers categories.
This book provides a fundamentally new approach to pattern recognition in which objects are characterized by relations to other objects instead of by using features or models. This 'dissimilarity representation' bridges the gap between the traditionally opposing approaches of statistical and structural pattern recognition.Physical phenomena, objects and events in the world are related in various and often complex ways. Such relations are usually modeled in the form of graphs or diagrams. While this is useful for communication between experts, such representation is difficult to combine and integrate by machine learning procedures. However, if the relations are captured by sets of dissimilarities, general data analysis procedures may be applied for analysis.With their detailed description of an unprecedented approach absent from traditional textbooks, the authors have crafted an essential book for every researcher and systems designer studying or developing pattern recognition systems.
Proceedings Of The Seventeenth Annual Acm Siam Symposium On Discrete Algorithms
DOWNLOAD
Author : SIAM Activity Group on Discrete Mathematics
language : en
Publisher: SIAM
Release Date : 2006-01-01
Proceedings Of The Seventeenth Annual Acm Siam Symposium On Discrete Algorithms written by SIAM Activity Group on Discrete Mathematics and has been published by SIAM this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-01-01 with Mathematics categories.
Symposium held in Miami, Florida, January 22–24, 2006.This symposium is jointly sponsored by the ACM Special Interest Group on Algorithms and Computation Theory and the SIAM Activity Group on Discrete Mathematics.Contents Preface; Acknowledgments; Session 1A: Confronting Hardness Using a Hybrid Approach, Virginia Vassilevska, Ryan Williams, and Shan Leung Maverick Woo; A New Approach to Proving Upper Bounds for MAX-2-SAT, Arist Kojevnikov and Alexander S. Kulikov, Measure and Conquer: A Simple O(20.288n) Independent Set Algorithm, Fedor V. Fomin, Fabrizio Grandoni, and Dieter Kratsch; A Polynomial Algorithm to Find an Independent Set of Maximum Weight in a Fork-Free Graph, Vadim V. Lozin and Martin Milanic; The Knuth-Yao Quadrangle-Inequality Speedup is a Consequence of Total-Monotonicity, Wolfgang W. Bein, Mordecai J. Golin, Larry L. Larmore, and Yan Zhang; Session 1B: Local Versus Global Properties of Metric Spaces, Sanjeev Arora, László Lovász, Ilan Newman, Yuval Rabani, Yuri Rabinovich, and Santosh Vempala; Directed Metrics and Directed Graph Partitioning Problems, Moses Charikar, Konstantin Makarychev, and Yury Makarychev; Improved Embeddings of Graph Metrics into Random Trees, Kedar Dhamdhere, Anupam Gupta, and Harald Räcke; Small Hop-diameter Sparse Spanners for Doubling Metrics, T-H. Hubert Chan and Anupam Gupta; Metric Cotype, Manor Mendel and Assaf Naor; Session 1C: On Nash Equilibria for a Network Creation Game, Susanne Albers, Stefan Eilts, Eyal Even-Dar, Yishay Mansour, and Liam Roditty; Approximating Unique Games, Anupam Gupta and Kunal Talwar; Computing Sequential Equilibria for Two-Player Games, Peter Bro Miltersen and Troels Bjerre Sørensen; A Deterministic Subexponential Algorithm for Solving Parity Games, Marcin Jurdzinski, Mike Paterson, and Uri Zwick; Finding Nucleolus of Flow Game, Xiaotie Deng, Qizhi Fang, and Xiaoxun Sun, Session 2: Invited Plenary Abstract: Predicting the “Unpredictable”, Rakesh V. Vohra, Northwestern University; Session 3A: A Near-Tight Approximation Lower Bound and Algorithm for the Kidnapped Robot Problem, Sven Koenig, Apurva Mudgal, and Craig Tovey; An Asymptotic Approximation Algorithm for 3D-Strip Packing, Klaus Jansen and Roberto Solis-Oba; Facility Location with Hierarchical Facility Costs, Zoya Svitkina and Éva Tardos; Combination Can Be Hard: Approximability of the Unique Coverage Problem, Erik D. Demaine, Uriel Feige, Mohammad Taghi Hajiaghayi, and Mohammad R. Salavatipour; Computing Steiner Minimum Trees in Hamming Metric, Ernst Althaus and Rouven Naujoks; Session 3B: Robust Shape Fitting via Peeling and Grating Coresets, Pankaj K. Agarwal, Sariel Har-Peled, and Hai Yu; Tightening Non-Simple Paths and Cycles on Surfaces, Éric Colin de Verdière and Jeff Erickson; Anisotropic Surface Meshing, Siu-Wing Cheng, Tamal K. Dey, Edgar A. Ramos, and Rephael Wenger; Simultaneous Diagonal Flips in Plane Triangulations, Prosenjit Bose, Jurek Czyzowicz, Zhicheng Gao, Pat Morin, and David R. Wood; Morphing Orthogonal Planar Graph Drawings, Anna Lubiw, Mark Petrick, and Michael Spriggs; Session 3C: Overhang, Mike Paterson and Uri Zwick; On the Capacity of Information Networks, Micah Adler, Nicholas J. A. Harvey, Kamal Jain, Robert Kleinberg, and April Rasala Lehman; Lower Bounds for Asymmetric Communication Channels and Distributed Source Coding, Micah Adler, Erik D. Demaine, Nicholas J. A. Harvey, and Mihai Patrascu; Self-Improving Algorithms, Nir Ailon, Bernard Chazelle, Seshadhri Comandur, and Ding Liu; Cake Cutting Really is Not a Piece of Cake, Jeff Edmonds and Kirk Pruhs; Session 4A: Testing Triangle-Freeness in General Graphs, Noga Alon, Tali Kaufman, Michael Krivelevich, and Dana Ron; Constraint Solving via Fractional Edge Covers, Martin Grohe and Dániel Marx; Testing Graph Isomorphism, Eldar Fischer and Arie Matsliah; Efficient Construction of Unit Circular-Arc Models, Min Chih Lin and Jayme L. Szwarcfiter, On The Chromatic Number of Some Geometric Hypergraphs, Shakhar Smorodinsky; Session 4B: A Robust Maximum Completion Time Measure for Scheduling, Moses Charikar and Samir Khuller; Extra Unit-Speed Machines are Almost as Powerful as Speedy Machines for Competitive Flow Time Scheduling, Ho-Leung Chan, Tak-Wah Lam, and Kin-Shing Liu; Improved Approximation Algorithms for Broadcast Scheduling, Nikhil Bansal, Don Coppersmith, and Maxim Sviridenko; Distributed Selfish Load Balancing, Petra Berenbrink, Tom Friedetzky, Leslie Ann Goldberg, Paul Goldberg, Zengjian Hu, and Russell Martin; Scheduling Unit Tasks to Minimize the Number of Idle Periods: A Polynomial Time Algorithm for Offline Dynamic Power Management, Philippe Baptiste; Session 4C: Rank/Select Operations on Large Alphabets: A Tool for Text Indexing, Alexander Golynski, J. Ian Munro, and S. Srinivasa Rao; O(log log n)-Competitive Dynamic Binary Search Trees, Chengwen Chris Wang, Jonathan Derryberry, and Daniel Dominic Sleator; The Rainbow Skip Graph: A Fault-Tolerant Constant-Degree Distributed Data Structure, Michael T. Goodrich, Michael J. Nelson, and Jonathan Z. Sun; Design of Data Structures for Mergeable Trees, Loukas Georgiadis, Robert E. Tarjan, and Renato F. Werneck; Implicit Dictionaries with O(1) Modifications per Update and Fast Search, Gianni Franceschini and J. Ian Munro; Session 5A: Sampling Binary Contingency Tables with a Greedy Start, Ivona Bezáková, Nayantara Bhatnagar, and Eric Vigoda; Asymmetric Balanced Allocation with Simple Hash Functions, Philipp Woelfel; Balanced Allocation on Graphs, Krishnaram Kenthapadi and Rina Panigrahy; Superiority and Complexity of the Spaced Seeds, Ming Li, Bin Ma, and Louxin Zhang; Solving Random Satisfiable 3CNF Formulas in Expected Polynomial Time, Michael Krivelevich and Dan Vilenchik; Session 5B: Analysis of Incomplete Data and an Intrinsic-Dimension Helly Theorem, Jie Gao, Michael Langberg, and Leonard J. Schulman; Finding Large Sticks and Potatoes in Polygons, Olaf Hall-Holt, Matthew J. Katz, Piyush Kumar, Joseph S. B. Mitchell, and Arik Sityon; Randomized Incremental Construction of Three-Dimensional Convex Hulls and Planar Voronoi Diagrams, and Approximate Range Counting, Haim Kaplan and Micha Sharir; Vertical Ray Shooting and Computing Depth Orders for Fat Objects, Mark de Berg and Chris Gray; On the Number of Plane Graphs, Oswin Aichholzer, Thomas Hackl, Birgit Vogtenhuber, Clemens Huemer, Ferran Hurtado, and Hannes Krasser; Session 5C: All-Pairs Shortest Paths for Unweighted Undirected Graphs in o(mn) Time, Timothy M. Chan; An O(n log n) Algorithm for Maximum st-Flow in a Directed Planar Graph, Glencora Borradaile and Philip Klein; A Simple GAP-Canceling Algorithm for the Generalized Maximum Flow Problem, Mateo Restrepo and David P. Williamson; Four Point Conditions and Exponential Neighborhoods for Symmetric TSP, Vladimir Deineko, Bettina Klinz, and Gerhard J. Woeginger; Upper Degree-Constrained Partial Orientations, Harold N. Gabow; Session 7A: On the Tandem Duplication-Random Loss Model of Genome Rearrangement, Kamalika Chaudhuri, Kevin Chen, Radu Mihaescu, and Satish Rao; Reducing Tile Complexity for Self-Assembly Through Temperature Programming, Ming-Yang Kao and Robert Schweller; Cache-Oblivious String Dictionaries, Gerth Stølting Brodal and Rolf Fagerberg; Cache-Oblivious Dynamic Programming, Rezaul Alam Chowdhury and Vijaya Ramachandran; A Computational Study of External-Memory BFS Algorithms, Deepak Ajwani, Roman Dementiev, and Ulrich Meyer; Session 7B: Tight Approximation Algorithms for Maximum General Assignment Problems, Lisa Fleischer, Michel X. Goemans, Vahab S. Mirrokni, and Maxim Sviridenko; Approximating the k-Multicut Problem, Daniel Golovin, Viswanath Nagarajan, and Mohit Singh; The Prize-Collecting Generalized Steiner Tree Problem Via A New Approach Of Primal-Dual Schema, Mohammad Taghi Hajiaghayi and Kamal Jain; 8/7-Approximation Algorithm for (1,2)-TSP, Piotr Berman and Marek Karpinski; Improved Lower and Upper Bounds for Universal TSP in Planar Metrics, Mohammad T. Hajiaghayi, Robert Kleinberg, and Tom Leighton; Session 7C: Leontief Economies Encode NonZero Sum Two-Player Games, B. Codenotti, A. Saberi, K. Varadarajan, and Y. Ye; Bottleneck Links, Variable Demand, and the Tragedy of the Commons, Richard Cole, Yevgeniy Dodis, and Tim Roughgarden; The Complexity of Quantitative Concurrent Parity Games, Krishnendu Chatterjee, Luca de Alfaro, and Thomas A. Henzinger; Equilibria for Economies with Production: Constant-Returns Technologies and Production Planning Constraints, Kamal Jain and Kasturi Varadarajan; Session 8A: Approximation Algorithms for Wavelet Transform Coding of Data Streams, Sudipto Guha and Boulos Harb; Simpler Algorithm for Estimating Frequency Moments of Data Streams, Lakshimath Bhuvanagiri, Sumit Ganguly, Deepanjan Kesh, and Chandan Saha; Trading Off Space for Passes in Graph Streaming Problems, Camil Demetrescu, Irene Finocchi, and Andrea Ribichini; Maintaining Significant Stream Statistics over Sliding Windows, L.K. Lee and H.F. Ting; Streaming and Sublinear Approximation of Entropy and Information Distances, Sudipto Guha, Andrew McGregor, and Suresh Venkatasubramanian; Session 8B: FPTAS for Mixed-Integer Polynomial Optimization with a Fixed Number of Variables, J. A. De Loera, R. Hemmecke, M. Köppe, and R. Weismantel; Linear Programming and Unique Sink Orientations, Bernd Gärtner and Ingo Schurr; Generating All Vertices of a Polyhedron is Hard, Leonid Khachiyan, Endre Boros, Konrad Borys, Khaled Elbassioni, and Vladimir Gurvich; A Semidefinite Programming Approach to Tensegrity Theory and Realizability of Graphs, Anthony Man-Cho So and Yinyu Ye; Ordering by Weighted Number of Wins Gives a Good Ranking for Weighted Tournaments, Don Coppersmith, Lisa Fleischer, and Atri Rudra; Session 8C: Weighted Isotonic Regression under L1 Norm, Stanislav Angelov, Boulos Harb, Sampath Kannan, and Li-San Wang; Oblivious String Embeddings and Edit Distance Approximations, Tugkan Batu, Funda Ergun, and Cenk Sahinalp0898716012\\This comprehensive book not only introduces the C and C++ programming languages but also shows how to use them in the numerical solution of partial differential equations (PDEs). It leads the reader through the entire solution process, from the original PDE, through the discretization stage, to the numerical solution of the resulting algebraic system. The well-debugged and tested code segments implement the numerical methods efficiently and transparently. Basic and advanced numerical methods are introduced and implemented easily and efficiently in a unified object-oriented approach.
Handbook Of Discrete And Computational Geometry
DOWNLOAD
Author : Csaba D. Toth
language : en
Publisher: CRC Press
Release Date : 2017-11-22
Handbook Of Discrete And Computational Geometry written by Csaba D. Toth and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-11-22 with Computers categories.
The Handbook of Discrete and Computational Geometry is intended as a reference book fully accessible to nonspecialists as well as specialists, covering all major aspects of both fields. The book offers the most important results and methods in discrete and computational geometry to those who use them in their work, both in the academic world—as researchers in mathematics and computer science—and in the professional world—as practitioners in fields as diverse as operations research, molecular biology, and robotics. Discrete geometry has contributed significantly to the growth of discrete mathematics in recent years. This has been fueled partly by the advent of powerful computers and by the recent explosion of activity in the relatively young field of computational geometry. This synthesis between discrete and computational geometry lies at the heart of this Handbook. A growing list of application fields includes combinatorial optimization, computer-aided design, computer graphics, crystallography, data analysis, error-correcting codes, geographic information systems, motion planning, operations research, pattern recognition, robotics, solid modeling, and tomography.
Principles Of Distributed Systems
DOWNLOAD
Author : Theodore P. Baker
language : en
Publisher: Springer Science & Business Media
Release Date : 2008-12-02
Principles Of Distributed Systems written by Theodore P. Baker and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-12-02 with Business & Economics categories.
This book constitutes the refereed proceedings of the 12th International Conference on Principles of Distributed Systems, OPODIS 2008, held in Luxor, Egypt, in December 2008. The 30 full papers and 11 short papers presented were carefully reviewed and selected from 102 submissions. The conference focused on the following topics: communication and synchronization protocols; distributed algorithms and multiprocessor algorithms; distributed cooperative computing; embedded systems; fault-tolerance, reliability and availability; grid and cluster computing; location- and context-aware systems; mobile agents and autonomous robots; mobile computing and networks; peer-to-peer systems and overlay networks; complexity and lower bounds; performance analysis of distributed systems; real-time systems; security issues in distributed computing and systems; sensor networks; specification and verification of distributed systems; and testing and experimentation with distributed systems.
Approximation Randomization And Combinatorial Optimization Algorithms And Techniques
DOWNLOAD
Author : Ashish Goel
language : en
Publisher: Springer
Release Date : 2008-08-28
Approximation Randomization And Combinatorial Optimization Algorithms And Techniques written by Ashish Goel and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-08-28 with Computers categories.
This volume contains the papers presented at the 11th International Wo- shop on Approximation Algorithms for Combinatorial Optimization Problems (APPROX 2008) and the 12th International Workshop on Randomization and Computation (RANDOM 2008), which took place concurrently at the MIT (M- sachusetts Institute of Technology) in Boston, USA, during August 25–27, 2008. APPROX focuses on algorithmic and complexity issues surrounding the development of e?cient approximate solutions to computationally di?cult problems, and was the 11th in the series after Aalborg (1998), Berkeley (1999), Saarbru ̈cken (2000), Berkeley (2001), Rome (2002), Princeton (2003), Cambridge (2004), Berkeley (2005), Barcelona (2006), and Princeton (2007). RANDOM is concerned with applications of randomness to computational and combinatorial problems, and was the 12th workshop in the series following Bologna (1997), Barcelona (1998), Berkeley (1999), Geneva (2000), Berkeley (2001), Harvard (2002), Princeton (2003), Cambridge (2004), Berkeley (2005), Barcelona (2006), and Princeton (2007). Topics of interest for APPROX and RANDOM are: design and analysis of - proximation algorithms, hardness of approximation, small space, sub-linear time, streaming, algorithms, embeddings and metric space methods, mathematical programming methods, combinatorial problems in graphs and networks, game t- ory, markets, economic applications, geometric problems, packing, covering, scheduling, approximate learning, design and analysis of randomized algorithms, randomized complexity theory, pseudorandomness and derandomization, random combinatorial structures, random walks/Markov chains, expander graphs and randomness extractors, probabilistic proof systems, random projections and - beddings, error-correcting codes, average-case analysis, property testing, com- tational learning theory, and other applications of approximation and randomness.