Microsoft Azure Machine Learning

DOWNLOAD
Download Microsoft Azure Machine Learning PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Microsoft Azure Machine Learning book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Microsoft Azure Essentials Azure Machine Learning
DOWNLOAD
Author : Jeff Barnes
language : en
Publisher: Microsoft Press
Release Date : 2015-04-25
Microsoft Azure Essentials Azure Machine Learning written by Jeff Barnes and has been published by Microsoft Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-04-25 with Computers categories.
Microsoft Azure Essentials from Microsoft Press is a series of free ebooks designed to help you advance your technical skills with Microsoft Azure. This third ebook in the series introduces Microsoft Azure Machine Learning, a service that a developer can use to build predictive analytics models (using training datasets from a variety of data sources) and then easily deploy those models for consumption as cloud web services. The ebook presents an overview of modern data science theory and principles, the associated workflow, and then covers some of the more common machine learning algorithms in use today. It builds a variety of predictive analytics models using real world data, evaluates several different machine learning algorithms and modeling strategies, and then deploys the finished models as machine learning web services on Azure within a matter of minutes. The ebook also expands on a working Azure Machine Learning predictive model example to explore the types of client and server applications you can create to consume Azure Machine Learning web services. Watch Microsoft Press’s blog and Twitter (@MicrosoftPress) to learn about other free ebooks in the Microsoft Azure Essentials series.
Microsoft Azure Machine Learning
DOWNLOAD
Author : Sumit Mund
language : en
Publisher:
Release Date : 2015-06-16
Microsoft Azure Machine Learning written by Sumit Mund and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-06-16 with Computers categories.
The book is intended for those who want to learn how to use Azure Machine Learning. Perhaps you already know a bit about Machine Learning, but have never used ML Studio in Azure; or perhaps you are an absolute newbie. In either case, this book will get you up-and-running quickly.
Automated Machine Learning With Microsoft Azure
DOWNLOAD
Author : Dennis Michael Sawyers
language : en
Publisher: Packt Publishing Ltd
Release Date : 2021-04-23
Automated Machine Learning With Microsoft Azure written by Dennis Michael Sawyers and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-04-23 with Computers categories.
A practical, step-by-step guide to using Microsoft's AutoML technology on the Azure Machine Learning service for developers and data scientists working with the Python programming language Key FeaturesCreate, deploy, productionalize, and scale automated machine learning solutions on Microsoft AzureImprove the accuracy of your ML models through automatic data featurization and model trainingIncrease productivity in your organization by using artificial intelligence to solve common problemsBook Description Automated Machine Learning with Microsoft Azure will teach you how to build high-performing, accurate machine learning models in record time. It will equip you with the knowledge and skills to easily harness the power of artificial intelligence and increase the productivity and profitability of your business. Guided user interfaces (GUIs) enable both novices and seasoned data scientists to easily train and deploy machine learning solutions to production. Using a careful, step-by-step approach, this book will teach you how to use Azure AutoML with a GUI as well as the AzureML Python software development kit (SDK). First, you'll learn how to prepare data, train models, and register them to your Azure Machine Learning workspace. You'll then discover how to take those models and use them to create both automated batch solutions using machine learning pipelines and real-time scoring solutions using Azure Kubernetes Service (AKS). Finally, you will be able to use AutoML on your own data to not only train regression, classification, and forecasting models but also use them to solve a wide variety of business problems. By the end of this Azure book, you'll be able to show your business partners exactly how your ML models are making predictions through automatically generated charts and graphs, earning their trust and respect. What you will learnUnderstand how to train classification, regression, and forecasting ML algorithms with Azure AutoMLPrepare data for Azure AutoML to ensure smooth model training and deploymentAdjust AutoML configuration settings to make your models as accurate as possibleDetermine when to use a batch-scoring solution versus a real-time scoring solutionProductionalize your AutoML and discover how to quickly deliver valueCreate real-time scoring solutions with AutoML and Azure Kubernetes ServiceTrain a large number of AutoML models at once using the AzureML Python SDKWho this book is for Data scientists, aspiring data scientists, machine learning engineers, or anyone interested in applying artificial intelligence or machine learning in their business will find this machine learning book useful. You need to have beginner-level knowledge of artificial intelligence and a technical background in computer science, statistics, or information technology before getting started. Familiarity with Python will help you implement the more advanced features found in the chapters, but even data analysts and SQL experts will be able to train ML models after finishing this book.
Designing Distributed Systems
DOWNLOAD
Author : Brendan Burns
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2018-02-20
Designing Distributed Systems written by Brendan Burns and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-02-20 with Computers categories.
Without established design patterns to guide them, developers have had to build distributed systems from scratch, and most of these systems are very unique indeed. Today, the increasing use of containers has paved the way for core distributed system patterns and reusable containerized components. This practical guide presents a collection of repeatable, generic patterns to help make the development of reliable distributed systems far more approachable and efficient. Author Brendan Burns—Director of Engineering at Microsoft Azure—demonstrates how you can adapt existing software design patterns for designing and building reliable distributed applications. Systems engineers and application developers will learn how these long-established patterns provide a common language and framework for dramatically increasing the quality of your system. Understand how patterns and reusable components enable the rapid development of reliable distributed systems Use the side-car, adapter, and ambassador patterns to split your application into a group of containers on a single machine Explore loosely coupled multi-node distributed patterns for replication, scaling, and communication between the components Learn distributed system patterns for large-scale batch data processing covering work-queues, event-based processing, and coordinated workflows
Interpretable Machine Learning
DOWNLOAD
Author : Christoph Molnar
language : en
Publisher: Lulu.com
Release Date : 2020
Interpretable Machine Learning written by Christoph Molnar and has been published by Lulu.com this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020 with Computers categories.
This book is about making machine learning models and their decisions interpretable. After exploring the concepts of interpretability, you will learn about simple, interpretable models such as decision trees, decision rules and linear regression. Later chapters focus on general model-agnostic methods for interpreting black box models like feature importance and accumulated local effects and explaining individual predictions with Shapley values and LIME. All interpretation methods are explained in depth and discussed critically. How do they work under the hood? What are their strengths and weaknesses? How can their outputs be interpreted? This book will enable you to select and correctly apply the interpretation method that is most suitable for your machine learning project.
Practical Automated Machine Learning On Azure
DOWNLOAD
Author : Deepak Mukunthu
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2019-09-23
Practical Automated Machine Learning On Azure written by Deepak Mukunthu and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-09-23 with Computers categories.
Develop smart applications without spending days and weeks building machine-learning models. With this practical book, you’ll learn how to apply automated machine learning (AutoML), a process that uses machine learning to help people build machine learning models. Deepak Mukunthu, Parashar Shah, and Wee Hyong Tok provide a mix of technical depth, hands-on examples, and case studies that show how customers are solving real-world problems with this technology. Building machine-learning models is an iterative and time-consuming process. Even those who know how to create ML models may be limited in how much they can explore. Once you complete this book, you’ll understand how to apply AutoML to your data right away. Learn how companies in different industries are benefiting from AutoML Get started with AutoML using Azure Explore aspects such as algorithm selection, auto featurization, and hyperparameter tuning Understand how data analysts, BI professions, developers can use AutoML in their familiar tools and experiences Learn how to get started using AutoML for use cases including classification, regression, and forecasting.
Mastering Azure Machine Learning
DOWNLOAD
Author : Christoph Körner
language : en
Publisher: Packt Publishing Ltd
Release Date : 2020-04-30
Mastering Azure Machine Learning written by Christoph Körner and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-04-30 with Computers categories.
Master expert techniques for building automated and highly scalable end-to-end machine learning models and pipelines in Azure using TensorFlow, Spark, and Kubernetes Key FeaturesMake sense of data on the cloud by implementing advanced analyticsTrain and optimize advanced deep learning models efficiently on Spark using Azure DatabricksDeploy machine learning models for batch and real-time scoring with Azure Kubernetes Service (AKS)Book Description The increase being seen in data volume today requires distributed systems, powerful algorithms, and scalable cloud infrastructure to compute insights and train and deploy machine learning (ML) models. This book will help you improve your knowledge of building ML models using Azure and end-to-end ML pipelines on the cloud. The book starts with an overview of an end-to-end ML project and a guide on how to choose the right Azure service for different ML tasks. It then focuses on Azure Machine Learning and takes you through the process of data experimentation, data preparation, and feature engineering using Azure Machine Learning and Python. You'll learn advanced feature extraction techniques using natural language processing (NLP), classical ML techniques, and the secrets of both a great recommendation engine and a performant computer vision model using deep learning methods. You'll also explore how to train, optimize, and tune models using Azure Automated Machine Learning and HyperDrive, and perform distributed training on Azure. Then, you'll learn different deployment and monitoring techniques using Azure Kubernetes Services with Azure Machine Learning, along with the basics of MLOps—DevOps for ML to automate your ML process as CI/CD pipeline. By the end of this book, you'll have mastered Azure Machine Learning and be able to confidently design, build and operate scalable ML pipelines in Azure. What you will learnSetup your Azure Machine Learning workspace for data experimentation and visualizationPerform ETL, data preparation, and feature extraction using Azure best practicesImplement advanced feature extraction using NLP and word embeddingsTrain gradient boosted tree-ensembles, recommendation engines and deep neural networks on Azure Machine LearningUse hyperparameter tuning and Azure Automated Machine Learning to optimize your ML modelsEmploy distributed ML on GPU clusters using Horovod in Azure Machine LearningDeploy, operate and manage your ML models at scaleAutomated your end-to-end ML process as CI/CD pipelines for MLOpsWho this book is for This machine learning book is for data professionals, data analysts, data engineers, data scientists, or machine learning developers who want to master scalable cloud-based machine learning architectures in Azure. This book will help you use advanced Azure services to build intelligent machine learning applications. A basic understanding of Python and working knowledge of machine learning are mandatory.
Azure Data Scientist Associate Certification Guide
DOWNLOAD
Author : Andreas Botsikas
language : en
Publisher: Packt Publishing Ltd
Release Date : 2021-12-03
Azure Data Scientist Associate Certification Guide written by Andreas Botsikas and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-12-03 with Computers categories.
Develop the skills you need to run machine learning workloads in Azure and pass the DP-100 exam with ease Key FeaturesCreate end-to-end machine learning training pipelines, with or without codeTrack experiment progress using the cloud-based MLflow-compatible process of Azure ML servicesOperationalize your machine learning models by creating batch and real-time endpointsBook Description The Azure Data Scientist Associate Certification Guide helps you acquire practical knowledge for machine learning experimentation on Azure. It covers everything you need to pass the DP-100 exam and become a certified Azure Data Scientist Associate. Starting with an introduction to data science, you'll learn the terminology that will be used throughout the book and then move on to the Azure Machine Learning (Azure ML) workspace. You'll discover the studio interface and manage various components, such as data stores and compute clusters. Next, the book focuses on no-code and low-code experimentation, and shows you how to use the Automated ML wizard to locate and deploy optimal models for your dataset. You'll also learn how to run end-to-end data science experiments using the designer provided in Azure ML Studio. You'll then explore the Azure ML Software Development Kit (SDK) for Python and advance to creating experiments and publishing models using code. The book also guides you in optimizing your model's hyperparameters using Hyperdrive before demonstrating how to use responsible AI tools to interpret and debug your models. Once you have a trained model, you'll learn to operationalize it for batch or real-time inferences and monitor it in production. By the end of this Azure certification study guide, you'll have gained the knowledge and the practical skills required to pass the DP-100 exam. What you will learnCreate a working environment for data science workloads on AzureRun data experiments using Azure Machine Learning servicesCreate training and inference pipelines using the designer or codeDiscover the best model for your dataset using Automated MLUse hyperparameter tuning to optimize trained modelsDeploy, use, and monitor models in productionInterpret the predictions of a trained modelWho this book is for This book is for developers who want to infuse their applications with AI capabilities and data scientists looking to scale their machine learning experiments in the Azure cloud. Basic knowledge of Python is needed to follow the code samples used in the book. Some experience in training machine learning models in Python using common frameworks like scikit-learn will help you understand the content more easily.
Exam Ref Ai 900 Microsoft Azure Ai Fundamentals
DOWNLOAD
Author : Julian Sharp
language : en
Publisher: Microsoft Press
Release Date : 2021-11-22
Exam Ref Ai 900 Microsoft Azure Ai Fundamentals written by Julian Sharp and has been published by Microsoft Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-11-22 with Artificial intelligence categories.
Direct from Microsoft, this Exam Ref is the official study guide for the new Microsoft AI-900 Microsoft Azure AI Fundamentals certification exam. Exam Ref AI-900 Microsoft Azure AI Fundamentals offers professional-level preparation that helps candidates maximize their exam performance and sharpen their skills on the job. It focuses on the specific areas of expertise modern IT professionals need to demonstrate real-world mastery of common machine learning (ML) and artificial intelligence (AI) workloads and how to use them in Azure.
Azure Machine Learning Engineering
DOWNLOAD
Author : Sina Fakhraee
language : en
Publisher: Packt Publishing Ltd
Release Date : 2023-01-20
Azure Machine Learning Engineering written by Sina Fakhraee and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-01-20 with Computers categories.
Fully build and productionize end-to-end machine learning solutions using Azure Machine Learning Service Key FeaturesAutomate complete machine learning solutions using Microsoft AzureUnderstand how to productionize machine learning modelsGet to grips with monitoring, MLOps, deep learning, distributed training, and reinforcement learningBook Description Data scientists working on productionizing machine learning (ML) workloads face a breadth of challenges at every step owing to the countless factors involved in getting ML models deployed and running. This book offers solutions to common issues, detailed explanations of essential concepts, and step-by-step instructions to productionize ML workloads using the Azure Machine Learning service. You'll see how data scientists and ML engineers working with Microsoft Azure can train and deploy ML models at scale by putting their knowledge to work with this practical guide. Throughout the book, you'll learn how to train, register, and productionize ML models by making use of the power of the Azure Machine Learning service. You'll get to grips with scoring models in real time and batch, explaining models to earn business trust, mitigating model bias, and developing solutions using an MLOps framework. By the end of this Azure Machine Learning book, you'll be ready to build and deploy end-to-end ML solutions into a production system using the Azure Machine Learning service for real-time scenarios. What you will learnTrain ML models in the Azure Machine Learning serviceBuild end-to-end ML pipelinesHost ML models on real-time scoring endpointsMitigate bias in ML modelsGet the hang of using an MLOps framework to productionize modelsSimplify ML model explainability using the Azure Machine Learning service and Azure InterpretWho this book is for Machine learning engineers and data scientists who want to move to ML engineering roles will find this AMLS book useful. Familiarity with the Azure ecosystem will assist with understanding the concepts covered.