Mitigating Process Variability And Soft Errors At Circuit Level For Finfets

DOWNLOAD
Download Mitigating Process Variability And Soft Errors At Circuit Level For Finfets PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Mitigating Process Variability And Soft Errors At Circuit Level For Finfets book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Mitigating Process Variability And Soft Errors At Circuit Level For Finfets
DOWNLOAD
Author : Alexandra Zimpeck
language : en
Publisher:
Release Date : 2021
Mitigating Process Variability And Soft Errors At Circuit Level For Finfets written by Alexandra Zimpeck and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021 with categories.
This book evaluates the influence of process variations (e.g. work-function fluctuations) and radiation-induced soft errors in a set of logic cells using FinFET technology, considering the 7nm technological node as a case study. Moreover, for accurate soft error estimation, the authors adopt a radiation event generator tool (MUSCA SEP3), which deals both with layout features and electrical properties of devices. The authors also explore four circuit-level techniques (e.g. transistor reordering, decoupling cells, Schmitt Trigger, and sleep transistor) as alternatives to attenuate the unwanted effects on FinFET logic cells. This book also evaluates the mitigation tendency when different levels of process variation, transistor sizing, and radiation particle characteristics are applied in the design. An overall comparison of all methods addressed by this work is provided allowing to trace a trade-off between the reliability gains and the design penalties of each approach regarding the area, performance, power consumption, single event transient (SET) pulse width, and SET cross-section. Explains how to measure the influence of process variability (e.g. work-function fluctuations) and radiation-induced soft errors in FinFET logic cells; Enables designers to improve the robustness of FinFET integrated circuits without focusing on manufacturing adjustments; Discusses the benefits and downsides of using circuit-level approaches such as transistor reordering, decoupling cells, Schmitt Trigger, and sleep transistor for mitigating the impact of process variability and soft errors; Evaluates the techniques described in the context of different test scenarios: distinct levels of process variations, transistor sizing, and different radiation features; Helps readers identify the best circuit design considering the target application and design requirements like area constraints or power/delay limitations.
Mitigating Process Variability And Soft Errors At Circuit Level For Finfets
DOWNLOAD
Author : Alexandra Zimpeck
language : en
Publisher: Springer Nature
Release Date : 2021-03-10
Mitigating Process Variability And Soft Errors At Circuit Level For Finfets written by Alexandra Zimpeck and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-03-10 with Technology & Engineering categories.
This book evaluates the influence of process variations (e.g. work-function fluctuations) and radiation-induced soft errors in a set of logic cells using FinFET technology, considering the 7nm technological node as a case study. Moreover, for accurate soft error estimation, the authors adopt a radiation event generator tool (MUSCA SEP3), which deals both with layout features and electrical properties of devices. The authors also explore four circuit-level techniques (e.g. transistor reordering, decoupling cells, Schmitt Trigger, and sleep transistor) as alternatives to attenuate the unwanted effects on FinFET logic cells. This book also evaluates the mitigation tendency when different levels of process variation, transistor sizing, and radiation particle characteristics are applied in the design. An overall comparison of all methods addressed by this work is provided allowing to trace a trade-off between the reliability gains and the design penalties of each approach regarding the area, performance, power consumption, single event transient (SET) pulse width, and SET cross-section.
Circuit Level Approaches To Mitigate The Process Variability And Soft Errors In Finfet Logic Cells
DOWNLOAD
Author : Alexandra Lackmann-Zimpeck
language : en
Publisher:
Release Date : 2019
Circuit Level Approaches To Mitigate The Process Variability And Soft Errors In Finfet Logic Cells written by Alexandra Lackmann-Zimpeck and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019 with categories.
Process variability mitigation and radiation hardness are relevant reliability requirements as chip manufacturing advances more in-depth into the nanometer regime. The parameter yield loss and critical failures on system behavior are the major consequences of these issues. Some related works explore the influence of process variability and single event transients (SET) on the circuits based on FinFET technologies, but there is a lack of approaches to mitigate them. For these reasons, from a design standpoint, considerable efforts should be made to understand and reduce the impacts introduced by reliability challenges. In this regard, the main contributions of this PhD thesis are to: 1) investigate the behavior of FinFET logic cells under process variations and radiation effects; 2) evaluate four circuit-level approaches to attenuate the impact caused by work-function fluctuations (WFF) and soft errors (SE); 3) provide an overall comparison between all techniques applied in this work; 4) trace a trade-off between the gains and penalties of each approach regarding performance, power, area, SET cross-section, and SET pulse width. Transistor reordering, decoupling cells, Schmitt Triggers, and sleep transistors are the four circuit-level mitigation techniques explored in this work. The potential of each one to make the logic cells more robust to the process variability and radiation-induced soft errors are assessed comparing the standard version results with the design using each approach. This PhD thesis also establishes the mitigation tendency when different levels of variation, transistor sizing, and radiation particles characteristics such as linear energy transfer (LET) are applied in the design with these techniques.The process variability is evaluated through Monte Carlo (MC) simulations with the WFF modeled as a Gaussian function using SPICE simulation while the SE susceptibility is estimated using the radiation event generator tool MUSCA SEP3 (developed at ONERA) also based on a MC method that deals both with radiation environment characteristics, layout features and the electrical properties of devices. In general, the proposed approaches improve the state-of-the-art by providing circuit-level options to reduce the process variability effects and SE susceptibility, at fewer penalties and design complexity. The transistor reordering technique can increase the robustness of logic cells under process variations up to 8%, but this method is not favorable for SE mitigation. The insertion of decoupling cells shows interesting outcomes for power variability control with levels of variation above 4%, and it can attenuate until 10% the delay variability considering manufacturing process with 3% of WFF. Depending on the LET, the design with decoupling cells can decrease until 10% of SE susceptibility of logic cells. The use of Schmitt Triggers in the output of FinFET cells can improve the variability sensitivity by up to 50%. The sleep transistor approach improves the power variability reaching around 12% for WFF of 5%, but the advantages of this method to delay variability depends how the transistors are arranged with the sleep transistor in the pull-down network. The addition of a sleep transistor become all logic cells studied free of faults even at the near-threshold regime. In this way, the best approach to mitigate the process variability is the use of Schmitt Triggers, as well as the sleep transistor technique is the most efficient for the SE mitigation. However, the Schmitt Trigger technique presents the highest penalties in area, performance, and power. Therefore, depending on the application, the sleep transistor technique can be the most appropriate to mitigate the process variability effects.
Vlsi Soc New Technology Enabler
DOWNLOAD
Author : Carolina Metzler
language : en
Publisher: Springer Nature
Release Date : 2020-07-22
Vlsi Soc New Technology Enabler written by Carolina Metzler and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-07-22 with Computers categories.
This book contains extended and revised versions of the best papers presented at the 27th IFIP WG 10.5/IEEE International Conference on Very Large Scale Integration, VLSI-SoC 2019, held in Cusco, Peru, in October 2019. The 15 full papers included in this volume were carefully reviewed and selected from the 28 papers (out of 82 submissions) presented at the conference. The papers discuss the latest academic and industrial results and developments as well as future trends in the field of System-on-Chip (SoC) design, considering the challenges of nano-scale, state-of-the-art and emerging manufacturing technologies. In particular they address cutting-edge research fields like heterogeneous, neuromorphic and brain-inspired, biologically-inspired, approximate computing systems.
Nanometer Cmos Ics
DOWNLOAD
Author : Harry J.M. Veendrick
language : en
Publisher: Springer
Release Date : 2017-04-28
Nanometer Cmos Ics written by Harry J.M. Veendrick and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-04-28 with Technology & Engineering categories.
This textbook provides a comprehensive, fully-updated introduction to the essentials of nanometer CMOS integrated circuits. It includes aspects of scaling to even beyond 12nm CMOS technologies and designs. It clearly describes the fundamental CMOS operating principles and presents substantial insight into the various aspects of design implementation and application. Coverage includes all associated disciplines of nanometer CMOS ICs, including physics, lithography, technology, design, memories, VLSI, power consumption, variability, reliability and signal integrity, testing, yield, failure analysis, packaging, scaling trends and road blocks. The text is based upon in-house Philips, NXP Semiconductors, Applied Materials, ASML, IMEC, ST-Ericsson, TSMC, etc., courseware, which, to date, has been completed by more than 4500 engineers working in a large variety of related disciplines: architecture, design, test, fabrication process, packaging, failure analysis and software.
Finfets And Other Multi Gate Transistors
DOWNLOAD
Author : J.-P. Colinge
language : en
Publisher: Springer Science & Business Media
Release Date : 2008
Finfets And Other Multi Gate Transistors written by J.-P. Colinge and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008 with Technology & Engineering categories.
This book explains the physics and properties of multi-gate field-effect transistors (MuGFETs), how they are made and how circuit designers can use them to improve the performances of integrated circuits. It covers the emergence of quantum effects due to the reduced size of the devices and describes the evolution of the MOS transistor from classical structures to SOI (silicon-on-insulator) and then to MuGFETs.
Compact Modeling
DOWNLOAD
Author : Gennady Gildenblat
language : en
Publisher: Springer Science & Business Media
Release Date : 2010-06-22
Compact Modeling written by Gennady Gildenblat and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-06-22 with Technology & Engineering categories.
Most of the recent texts on compact modeling are limited to a particular class of semiconductor devices and do not provide comprehensive coverage of the field. Having a single comprehensive reference for the compact models of most commonly used semiconductor devices (both active and passive) represents a significant advantage for the reader. Indeed, several kinds of semiconductor devices are routinely encountered in a single IC design or in a single modeling support group. Compact Modeling includes mostly the material that after several years of IC design applications has been found both theoretically sound and practically significant. Assigning the individual chapters to the groups responsible for the definitive work on the subject assures the highest possible degree of expertise on each of the covered models.
Resistive Random Access Memory Rram
DOWNLOAD
Author : Shimeng Yu
language : en
Publisher: Morgan & Claypool Publishers
Release Date : 2016-03-18
Resistive Random Access Memory Rram written by Shimeng Yu and has been published by Morgan & Claypool Publishers this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-03-18 with Technology & Engineering categories.
RRAM technology has made significant progress in the past decade as a competitive candidate for the next generation non-volatile memory (NVM). This lecture is a comprehensive tutorial of metal oxide-based RRAM technology from device fabrication to array architecture design. State-of-the-art RRAM device performances, characterization, and modeling techniques are summarized, and the design considerations of the RRAM integration to large-scale array with peripheral circuits are discussed. Chapter 2 introduces the RRAM device fabrication techniques and methods to eliminate the forming process, and will show its scalability down to sub-10 nm regime. Then the device performances such as programming speed, variability control, and multi-level operation are presented, and finally the reliability issues such as cycling endurance and data retention are discussed. Chapter 3 discusses the RRAM physical mechanism, and the materials characterization techniques to observe the conductive filaments and the electrical characterization techniques to study the electronic conduction processes. It also presents the numerical device modeling techniques for simulating the evolution of the conductive filaments as well as the compact device modeling techniques for circuit-level design. Chapter 4 discusses the two common RRAM array architectures for large-scale integration: one-transistor-one-resistor (1T1R) and cross-point architecture with selector. The write/read schemes are presented and the peripheral circuitry design considerations are discussed. Finally, a 3D integration approach is introduced for building ultra-high density RRAM array. Chapter 5 is a brief summary and will give an outlook for RRAM’s potential novel applications beyond the NVM applications.
Random Telegraph Signals In Semiconductor Devices
DOWNLOAD
Author : Eddy Simoen
language : en
Publisher:
Release Date : 2016
Random Telegraph Signals In Semiconductor Devices written by Eddy Simoen and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016 with SCIENCE categories.
"Following their first observation in 1984, random telegraph signals (RTSs) were initially a purely scientific tool to study fundamental aspects of defects in semiconductor devices. As semiconductor devices move to the nanoscale however, RTSs have become an issue of major concern to the semiconductor industry, both in development of current technology, such as memory devices and logic circuits, as well as in future semiconductor devices beyond the silicon roadmap, such as nanowire, TFET and carbon nanotube-based devices. It has become clear that the reliability of state-of-the-art and future CMOS technology nodes is dominated by RTS and single trap phenomena, and so its understanding is of vital importance for the modelling and simulation of the operation and the expected lifetime of CMOS devices and circuits. It is the aim of this book to provide a comprehensive and up-to-date review of one of the most challenging issues facing the semiconductor industry, from the fundamentals of RTSs to applied technology."--Prové de l'editor.
3d Tcad Simulation For Cmos Nanoeletronic Devices
DOWNLOAD
Author : Yung-Chun Wu
language : en
Publisher: Springer
Release Date : 2017-06-19
3d Tcad Simulation For Cmos Nanoeletronic Devices written by Yung-Chun Wu and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-06-19 with Technology & Engineering categories.
This book demonstrates how to use the Synopsys Sentaurus TCAD 2014 version for the design and simulation of 3D CMOS (complementary metal–oxide–semiconductor) semiconductor nanoelectronic devices, while also providing selected source codes (Technology Computer-Aided Design, TCAD). Instead of the built-in examples of Sentaurus TCAD 2014, the practical cases presented here, based on years of teaching and research experience, are used to interpret and analyze simulation results of the physical and electrical properties of designed 3D CMOSFET (metal–oxide–semiconductor field-effect transistor) nanoelectronic devices. The book also addresses in detail the fundamental theory of advanced semiconductor device design for the further simulation and analysis of electric and physical properties of semiconductor devices. The design and simulation technologies for nano-semiconductor devices explored here are more practical in nature and representative of the semiconductor industry, and as such can promote the development of pioneering semiconductor devices, semiconductor device physics, and more practically-oriented approaches to teaching and learning semiconductor engineering. The book can be used for graduate and senior undergraduate students alike, while also offering a reference guide for engineers and experts in the semiconductor industry. Readers are expected to have some preliminary knowledge of the field.