[PDF] Mixed Models - eBooks Review

Mixed Models


Mixed Models
DOWNLOAD

Download Mixed Models PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Mixed Models book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Generalized Linear Mixed Models


Generalized Linear Mixed Models
DOWNLOAD
Author : Charles E. McCulloch
language : en
Publisher: IMS
Release Date : 2003

Generalized Linear Mixed Models written by Charles E. McCulloch and has been published by IMS this book supported file pdf, txt, epub, kindle and other format this book has been release on 2003 with Mathematics categories.


Wiley Series in Probability and Statistics A modern perspective on mixed models The availability of powerful computing methods in recent decades has thrust linear and nonlinear mixed models into the mainstream of statistical application. This volume offers a modern perspective on generalized, linear, and mixed models, presenting a unified and accessible treatment of the newest statistical methods for analyzing correlated, nonnormally distributed data. As a follow-up to Searle's classic, Linear Models, and Variance Components by Searle, Casella, and McCulloch, this new work progresses from the basic one-way classification to generalized linear mixed models. A variety of statistical methods are explained and illustrated, with an emphasis on maximum likelihood and restricted maximum likelihood. An invaluable resource for applied statisticians and industrial practitioners, as well as students interested in the latest results, Generalized, Linear, and Mixed Models features: * A review of the basics of linear models and linear mixed models * Descriptions of models for nonnormal data, including generalized linear and nonlinear models * Analysis and illustration of techniques for a variety of real data sets * Information on the accommodation of longitudinal data using these models * Coverage of the prediction of realized values of random effects * A discussion of the impact of computing issues on mixed models



Linear Mixed Models


Linear Mixed Models
DOWNLOAD
Author : Brady T. West
language : en
Publisher: CRC Press
Release Date : 2006-11-22

Linear Mixed Models written by Brady T. West and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-11-22 with Mathematics categories.


Simplifying the often confusing array of software programs for fitting linear mixed models (LMMs), Linear Mixed Models: A Practical Guide Using Statistical Software provides a basic introduction to primary concepts, notation, software implementation, model interpretation, and visualization of clustered and longitudinal data. This easy-to-nav



Mixed Models


Mixed Models
DOWNLOAD
Author : Eugene Demidenko
language : en
Publisher: John Wiley & Sons
Release Date : 2005-01-28

Mixed Models written by Eugene Demidenko and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2005-01-28 with Mathematics categories.


A rigorous, self-contained examination of mixed model theory and application Mixed modeling is one of the most promising and exciting areas of statistical analysis, enabling the analysis of nontraditional, clustered data that may come in the form of shapes or images. This book provides in-depth mathematical coverage of mixed models’ statistical properties and numerical algorithms, as well as applications such as the analysis of tumor regrowth, shape, and image. Paying special attention to algorithms and their implementations, the book discusses: Modeling of complex clustered or longitudinal data Modeling data with multiple sources of variation Modeling biological variety and heterogeneity Mixed model as a compromise between the frequentist and Bayesian approaches Mixed model for the penalized log-likelihood Healthy Akaike Information Criterion (HAIC) How to cope with parameter multidimensionality How to solve ill-posed problems including image reconstruction problems Modeling of ensemble shapes and images Statistics of image processing Major results and points of discussion at the end of each chapter along with "Summary Points" sections make this reference not only comprehensive but also highly accessible for professionals and students alike in a broad range of fields such as cancer research, computer science, engineering, and industry.



Sas For Mixed Models


Sas For Mixed Models
DOWNLOAD
Author : Walter W. Stroup
language : en
Publisher: SAS Institute
Release Date : 2018-12-12

Sas For Mixed Models written by Walter W. Stroup and has been published by SAS Institute this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-12-12 with Computers categories.


Discover the power of mixed models with SAS. Mixed models—now the mainstream vehicle for analyzing most research data—are part of the core curriculum in most master’s degree programs in statistics and data science. In a single volume, this book updates both SAS® for Linear Models, Fourth Edition, and SAS® for Mixed Models, Second Edition, covering the latest capabilities for a variety of applications featuring the SAS GLIMMIX and MIXED procedures. Written for instructors of statistics, graduate students, scientists, statisticians in business or government, and other decision makers, SAS® for Mixed Models is the perfect entry for those with a background in two-way analysis of variance, regression, and intermediate-level use of SAS. This book expands coverage of mixed models for non-normal data and mixed-model-based precision and power analysis, including the following topics: Random-effect-only and random-coefficients models Multilevel, split-plot, multilocation, and repeated measures models Hierarchical models with nested random effects Analysis of covariance models Generalized linear mixed models This book is part of the SAS Press program.



Linear Mixed Models In Practice


Linear Mixed Models In Practice
DOWNLOAD
Author : Geert Verbeke
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06

Linear Mixed Models In Practice written by Geert Verbeke and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Medical categories.


The dissemination of the MIXED procedure in SAS has provided a whole class of statistical models for routine use. We believe that both the ideas be hind the techniques and their implementation in SAS are not at all straight forward and users from various applied backgrounds, including the phar maceutical industry, have experienced difficulties in using the procedure effectively. Courses and consultancy on PROC MIXED have been in great demand in recent years, illustrating the clear need for resource material to aid the user. This book is intended as a contribution to bridging this gap. We hope the book will be of value to a wide audience, including applied statisticians and many biomedical researchers, particularly in the pharma ceutical industry, medical and public health research organizations, con tract research organizations, and academic departments. This implies that our book is explanatory rather than research oriented and that it empha sizes practice rather than mathematical rigor. In this respect, clear guidance and advice on practical issues are the main focus of the text. Nevertheless, this does not imply that more advanced topics have been avoided. Sections containing material of a deeper level have been sign posted by means of an asterisk.



Generalized Linear Mixed Models


Generalized Linear Mixed Models
DOWNLOAD
Author : Walter W. Stroup
language : en
Publisher: CRC Press
Release Date : 2016-04-19

Generalized Linear Mixed Models written by Walter W. Stroup and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-04-19 with Mathematics categories.


With numerous examples using SAS PROC GLIMMIX, this text presents an introduction to linear modeling using the generalized linear mixed model as an overarching conceptual framework. For readers new to linear models, the book helps them see the big picture. It shows how linear models fit with the rest of the core statistics curriculum and points out the major issues that statistical modelers must consider.



Linear Mixed Models For Longitudinal Data


Linear Mixed Models For Longitudinal Data
DOWNLOAD
Author : Geert Verbeke
language : en
Publisher: Springer Science & Business Media
Release Date : 2009-04-28

Linear Mixed Models For Longitudinal Data written by Geert Verbeke and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-04-28 with Mathematics categories.


This book provides a comprehensive treatment of linear mixed models for continuous longitudinal data. Next to model formulation, this edition puts major emphasis on exploratory data analysis for all aspects of the model, such as the marginal model, subject-specific profiles, and residual covariance structure. Further, model diagnostics and missing data receive extensive treatment. Sensitivity analysis for incomplete data is given a prominent place. Most analyses were done with the MIXED procedure of the SAS software package, but the data analyses are presented in a software-independent fashion.



Mixed Models


Mixed Models
DOWNLOAD
Author : Eugene Demidenko
language : en
Publisher: John Wiley & Sons
Release Date : 2013-08-05

Mixed Models written by Eugene Demidenko and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-08-05 with Mathematics categories.


Praise for the First Edition “This book will serve to greatly complement the growing number of texts dealing with mixed models, and I highly recommend including it in one’s personal library.” —Journal of the American Statistical Association Mixed modeling is a crucial area of statistics, enabling the analysis of clustered and longitudinal data. Mixed Models: Theory and Applications with R, Second Edition fills a gap in existing literature between mathematical and applied statistical books by presenting a powerful examination of mixed model theory and application with special attention given to the implementation in R. The new edition provides in-depth mathematical coverage of mixed models’ statistical properties and numerical algorithms, as well as nontraditional applications, such as regrowth curves, shapes, and images. The book features the latest topics in statistics including modeling of complex clustered or longitudinal data, modeling data with multiple sources of variation, modeling biological variety and heterogeneity, Healthy Akaike Information Criterion (HAIC), parameter multidimensionality, and statistics of image processing. Mixed Models: Theory and Applications with R, Second Edition features unique applications of mixed model methodology, as well as: Comprehensive theoretical discussions illustrated by examples and figures Over 300 exercises, end-of-section problems, updated data sets, and R subroutines Problems and extended projects requiring simulations in R intended to reinforce material Summaries of major results and general points of discussion at the end of each chapter Open problems in mixed modeling methodology, which can be used as the basis for research or PhD dissertations Ideal for graduate-level courses in mixed statistical modeling, the book is also an excellent reference for professionals in a range of fields, including cancer research, computer science, and engineering.



Non Standard Problems In Inference For Additive And Linear Mixed Models


Non Standard Problems In Inference For Additive And Linear Mixed Models
DOWNLOAD
Author : Sonja Greven
language : en
Publisher: Cuvillier Verlag
Release Date : 2008

Non Standard Problems In Inference For Additive And Linear Mixed Models written by Sonja Greven and has been published by Cuvillier Verlag this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008 with Inference categories.




Explanatory Item Response Models


Explanatory Item Response Models
DOWNLOAD
Author : Paul de Boeck
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-03-09

Explanatory Item Response Models written by Paul de Boeck and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-03-09 with Social Science categories.


This edited volume gives a new and integrated introduction to item re sponse models (predominantly used in measurement applications in psy chology, education, and other social science areas) from the viewpoint of the statistical theory of generalized linear and nonlinear mixed models. Moreover, this new framework aHows the domain of item response mod els to be co-ordinated and broadened to emphasize their explanatory uses beyond their standard descriptive uses. The basic explanatory principle is that item responses can be modeled as a function of predictors of various kinds. The predictors can be (a) char acteristics of items, of persons, and of combinations of persons and items; they can be (b) observed or latent (of either items or persons); and they can be (c) latent continuous or latent categorical. Thus, a broad range of models can be generated, including a wide range of extant item response models as weH as some new ones. Within this range, models with explana tory predictors are given special attention, but we also discuss descriptive models. Note that the 'item responses' that we are referring to are not just the traditional 'test data,' but are broadly conceived as categorical data from a repeated observations design. Hence, data from studies with repeated-observations experimental designs, or with longitudinal designs, mayaIso be modeled. The intended audience for this volume is rather broad.