[PDF] Model Reduction And Approximation - eBooks Review

Model Reduction And Approximation


Model Reduction And Approximation
DOWNLOAD

Download Model Reduction And Approximation PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Model Reduction And Approximation book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Model Reduction And Approximation


Model Reduction And Approximation
DOWNLOAD
Author : Peter Benner
language : en
Publisher: SIAM
Release Date : 2017-07-06

Model Reduction And Approximation written by Peter Benner and has been published by SIAM this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-07-06 with Science categories.


Many physical, chemical, biomedical, and technical processes can be described by partial differential equations or dynamical systems. In spite of increasing computational capacities, many problems are of such high complexity that they are solvable only with severe simplifications, and the design of efficient numerical schemes remains a central research challenge. This book presents a tutorial introduction to recent developments in mathematical methods for model reduction and approximation of complex systems. Model Reduction and Approximation: Theory and Algorithms contains three parts that cover (I) sampling-based methods, such as the reduced basis method and proper orthogonal decomposition, (II) approximation of high-dimensional problems by low-rank tensor techniques, and (III) system-theoretic methods, such as balanced truncation, interpolatory methods, and the Loewner framework. It is tutorial in nature, giving an accessible introduction to state-of-the-art model reduction and approximation methods. It also covers a wide range of methods drawn from typically distinct communities (sampling based, tensor based, system-theoretic).?? This book is intended for researchers interested in model reduction and approximation, particularly graduate students and young researchers.



Model Order Reduction Theory Research Aspects And Applications


Model Order Reduction Theory Research Aspects And Applications
DOWNLOAD
Author : Wilhelmus H. Schilders
language : en
Publisher: Springer Science & Business Media
Release Date : 2008-08-27

Model Order Reduction Theory Research Aspects And Applications written by Wilhelmus H. Schilders and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-08-27 with Mathematics categories.


The idea for this book originated during the workshop “Model order reduction, coupled problems and optimization” held at the Lorentz Center in Leiden from S- tember 19–23, 2005. During one of the discussion sessions, it became clear that a book describing the state of the art in model order reduction, starting from the very basics and containing an overview of all relevant techniques, would be of great use for students, young researchers starting in the ?eld, and experienced researchers. The observation that most of the theory on model order reduction is scattered over many good papers, making it dif?cult to ?nd a good starting point, was supported by most of the participants. Moreover, most of the speakers at the workshop were willing to contribute to the book that is now in front of you. The goal of this book, as de?ned during the discussion sessions at the workshop, is three-fold: ?rst, it should describe the basics of model order reduction. Second, both general and more specialized model order reduction techniques for linear and nonlinear systems should be covered, including the use of several related numerical techniques. Third, the use of model order reduction techniques in practical appli- tions and current research aspects should be discussed. We have organized the book according to these goals. In Part I, the rationale behind model order reduction is explained, and an overview of the most common methods is described.



Approximation Of Large Scale Dynamical Systems


Approximation Of Large Scale Dynamical Systems
DOWNLOAD
Author : Athanasios C. Antoulas
language : en
Publisher: SIAM
Release Date : 2009-06-25

Approximation Of Large Scale Dynamical Systems written by Athanasios C. Antoulas and has been published by SIAM this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-06-25 with Mathematics categories.


Mathematical models are used to simulate, and sometimes control, the behavior of physical and artificial processes such as the weather and very large-scale integration (VLSI) circuits. The increasing need for accuracy has led to the development of highly complex models. However, in the presence of limited computational accuracy and storage capabilities model reduction (system approximation) is often necessary. Approximation of Large-Scale Dynamical Systems provides a comprehensive picture of model reduction, combining system theory with numerical linear algebra and computational considerations. It addresses the issue of model reduction and the resulting trade-offs between accuracy and complexity. Special attention is given to numerical aspects, simulation questions, and practical applications.



Machine Learning For Model Order Reduction


Machine Learning For Model Order Reduction
DOWNLOAD
Author : Khaled Salah Mohamed
language : en
Publisher: Springer
Release Date : 2018-03-02

Machine Learning For Model Order Reduction written by Khaled Salah Mohamed and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-03-02 with Technology & Engineering categories.


This Book discusses machine learning for model order reduction, which can be used in modern VLSI design to predict the behavior of an electronic circuit, via mathematical models that predict behavior. The author describes techniques to reduce significantly the time required for simulations involving large-scale ordinary differential equations, which sometimes take several days or even weeks. This method is called model order reduction (MOR), which reduces the complexity of the original large system and generates a reduced-order model (ROM) to represent the original one. Readers will gain in-depth knowledge of machine learning and model order reduction concepts, the tradeoffs involved with using various algorithms, and how to apply the techniques presented to circuit simulations and numerical analysis. Introduces machine learning algorithms at the architecture level and the algorithm levels of abstraction; Describes new, hybrid solutions for model order reduction; Presents machine learning algorithms in depth, but simply; Uses real, industrial applications to verify algorithms.



Reduced Basis Methods For Partial Differential Equations


Reduced Basis Methods For Partial Differential Equations
DOWNLOAD
Author : Alfio Quarteroni
language : en
Publisher: Springer
Release Date : 2015-08-19

Reduced Basis Methods For Partial Differential Equations written by Alfio Quarteroni and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-08-19 with Mathematics categories.


This book provides a basic introduction to reduced basis (RB) methods for problems involving the repeated solution of partial differential equations (PDEs) arising from engineering and applied sciences, such as PDEs depending on several parameters and PDE-constrained optimization. The book presents a general mathematical formulation of RB methods, analyzes their fundamental theoretical properties, discusses the related algorithmic and implementation aspects, and highlights their built-in algebraic and geometric structures. More specifically, the authors discuss alternative strategies for constructing accurate RB spaces using greedy algorithms and proper orthogonal decomposition techniques, investigate their approximation properties and analyze offline-online decomposition strategies aimed at the reduction of computational complexity. Furthermore, they carry out both a priori and a posteriori error analysis. The whole mathematical presentation is made more stimulating by the use of representative examples of applicative interest in the context of both linear and nonlinear PDEs. Moreover, the inclusion of many pseudocodes allows the reader to easily implement the algorithms illustrated throughout the text. The book will be ideal for upper undergraduate students and, more generally, people interested in scientific computing. All these pseudocodes are in fact implemented in a MATLAB package that is freely available at https://github.com/redbkit



Dimension Reduction Of Large Scale Systems


Dimension Reduction Of Large Scale Systems
DOWNLOAD
Author : Peter Benner
language : en
Publisher: Springer Science & Business Media
Release Date : 2006-03-30

Dimension Reduction Of Large Scale Systems written by Peter Benner and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-03-30 with Technology & Engineering categories.


In the past decades, model reduction has become an ubiquitous tool in analysis and simulation of dynamical systems, control design, circuit simulation, structural dynamics, CFD, and many other disciplines dealing with complex physical models. The aim of this book is to survey some of the most successful model reduction methods in tutorial style articles and to present benchmark problems from several application areas for testing and comparing existing and new algorithms. As the discussed methods have often been developed in parallel in disconnected application areas, the intention of the mini-workshop in Oberwolfach and its proceedings is to make these ideas available to researchers and practitioners from all these different disciplines.



Wavelet Based Approximation Schemes For Singular Integral Equations


Wavelet Based Approximation Schemes For Singular Integral Equations
DOWNLOAD
Author : Madan Mohan Panja
language : en
Publisher: CRC Press
Release Date : 2020-06-07

Wavelet Based Approximation Schemes For Singular Integral Equations written by Madan Mohan Panja and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-06-07 with Mathematics categories.


Many mathematical problems in science and engineering are defined by ordinary or partial differential equations with appropriate initial-boundary conditions. Among the various methods, boundary integral equation method (BIEM) is probably the most effective. It’s main advantage is that it changes a problem from its formulation in terms of unbounded differential operator to one for an integral/integro-differential operator, which makes the problem tractable from the analytical or numerical point of view. Basically, the review/study of the problem is shifted to a boundary (a relatively smaller domain), where it gives rise to integral equations defined over a suitable function space. Integral equations with singular kernels areamong the most important classes in the fields of elasticity, fluid mechanics, electromagnetics and other domains in applied science and engineering. With the advancesin computer technology, numerical simulations have become important tools in science and engineering. Several methods have been developed in numerical analysis for equations in mathematical models of applied sciences. Widely used methods include: Finite Difference Method (FDM), Finite Element Method (FEM), Finite Volume Method (FVM) and Galerkin Method (GM). Unfortunately, none of these are versatile. Each has merits and limitations. For example, the widely used FDM and FEM suffers from difficulties in problem solving when rapid changes appear in singularities. Even with the modern computing machines, analysis of shock-wave or crack propagations in three dimensional solids by the existing classical numerical schemes is challenging (computational time/memory requirements). Therefore, with the availability of faster computing machines, research into the development of new efficient schemes for approximate solutions/numerical simulations is an ongoing parallel activity. Numerical methods based on wavelet basis (multiresolution analysis) may be regarded as a confluence of widely used numerical schemes based on Finite Difference Method, Finite Element Method, Galerkin Method, etc. The objective of this monograph is to deal with numerical techniques to obtain (multiscale) approximate solutions in wavelet basis of different types of integral equations with kernels involving varieties of singularities appearing in the field of elasticity, fluid mechanics, electromagnetics and many other domains in applied science and engineering.



Mathematics For Machine Learning


Mathematics For Machine Learning
DOWNLOAD
Author : Marc Peter Deisenroth
language : en
Publisher: Cambridge University Press
Release Date : 2020-04-23

Mathematics For Machine Learning written by Marc Peter Deisenroth and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-04-23 with Computers categories.


The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site.



Interpolatory Methods For Model Reduction


Interpolatory Methods For Model Reduction
DOWNLOAD
Author : A. C. Antoulas
language : en
Publisher: SIAM
Release Date : 2020-01-13

Interpolatory Methods For Model Reduction written by A. C. Antoulas and has been published by SIAM this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-01-13 with Mathematics categories.


Dynamical systems are a principal tool in the modeling, prediction, and control of a wide range of complex phenomena. As the need for improved accuracy leads to larger and more complex dynamical systems, direct simulation often becomes the only available strategy for accurate prediction or control, inevitably creating a considerable burden on computational resources. This is the main context where one considers model reduction, seeking to replace large systems of coupled differential and algebraic equations that constitute high fidelity system models with substantially fewer equations that are crafted to control the loss of fidelity that order reduction may induce in the system response. Interpolatory methods are among the most widely used model reduction techniques, and Interpolatory Methods for Model Reduction is the first comprehensive analysis of this approach available in a single, extensive resource. It introduces state-of-the-art methods reflecting significant developments over the past two decades, covering both classical projection frameworks for model reduction and data-driven, nonintrusive frameworks. This textbook is appropriate for a wide audience of engineers and other scientists working in the general areas of large-scale dynamical systems and data-driven modeling of dynamics.



Model Reduction Of Nonlinear Mechanical Systems Via Optimal Projection And Tensor Approximation


Model Reduction Of Nonlinear Mechanical Systems Via Optimal Projection And Tensor Approximation
DOWNLOAD
Author : Kevin Thomas Carlberg
language : en
Publisher: Stanford University
Release Date : 2011

Model Reduction Of Nonlinear Mechanical Systems Via Optimal Projection And Tensor Approximation written by Kevin Thomas Carlberg and has been published by Stanford University this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011 with categories.


Despite the advent and maturation of high-performance computing, high-fidelity physics-based numerical simulations remain computationally intensive in many fields. As a result, such simulations are often impractical for time-critical applications such as fast-turnaround design, control, and uncertainty quantification. The objective of this thesis is to enable rapid, accurate analysis of high-fidelity nonlinear models to enable their use in time-critical settings. Model reduction presents a promising approach for realizing this goal. This class of methods generates low-dimensional models that preserves key features of the high-fidelity model. Such methods have been shown to generate fast, accurate solutions when applied to specialized problems such as linear time-invariant systems. However, model reduction techniques for highly nonlinear systems has been limited primarily to approaches based on the heuristic proper orthogonal decomposition (POD)--Galerkin approach. These methods often generate inaccurate responses because 1) POD--Galerkin does not generally minimize any measure of the system error, and 2) the POD basis is not constructed to minimize errors in the system's outputs of interest. Furthermore, simulation times for these models usually remain large, as reducing the dimension of a nonlinear system does not necessarily reduce its computational complexity. This thesis presents two model reduction techniques that addresses these shortcomings of the POD--Galerkin method. The first method is a `compact POD' approach for computing the small-dimensional trial basis; this approach is applicable to parameterized static systems. The compact POD basis is constructed using a goal-oriented framework that allows sensitivity derivatives to be employed as snapshots. The second method is a Gauss--Newton with approximated tensors (GNAT) method applicable to nonlinear systems. Similar to other POD-based approaches, the GNAT method first executes high-fidelity simulations during a costly `offline' stage; it computes a POD subspace that optimally represents the state as observed during these simulations. To compute fast, accurate `online' solutions, the method introduces two approximations that satisfy optimality and consistency conditions. First, the method decreases the system dimension by searching for the solutions in the low-dimensional POD subspace. As opposed to performing a Galerkin projection, the method handles the resulting overdetermined system of equations arising at each time step by formulating a least-squares problem; this ensures that a measure of the system error (i.e. the residual) is minimized. Second, the method decreases the model's computational complexity by approximating the residual and Jacobian using the `gappy POD' technique; this requires computing only a few rows of the approximated quantities. For computational mechanics problems, the GNAT method leads to the concept of a sample mesh: the subset of the mesh needed to compute the selected rows of the residual and Jacobian. Because the reduced-order model uses only the sample mesh for computations, the online stage requires minimal computational resources.