[PDF] Modeling Complex Data For Creating Information - eBooks Review

Modeling Complex Data For Creating Information


Modeling Complex Data For Creating Information
DOWNLOAD

Download Modeling Complex Data For Creating Information PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Modeling Complex Data For Creating Information book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Modeling Complex Data For Creating Information


Modeling Complex Data For Creating Information
DOWNLOAD
Author : Jacques-Emile Dubois
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06

Modeling Complex Data For Creating Information written by Jacques-Emile Dubois and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Social Science categories.


J.-E DUBOIS and N. GERSHON As with Volume 1 in this series, this book was inspired by the Symposium on "Communications and Computer Aided Systems" held at the 14th International CODATA Conference in September 1994 in Chambery, France. This book was conceived and influenced by the discussions at the Symposium and most of the contributions were written following the Conference. Whereas the first volume dealt with the numerous challenges facing the information revolution, especially its communication aspects, this one provides an insight into the recent tools provided by computer science for handling the complex aspects of scientific and technological data. This volume, "Modeling Complex Data for Creating Information," is concerned with real and virtual objects often involved with data handling processes encountered frequently in modeling physical phenomena and systems behavior. Topics concerning modeling complex data for creating information include: • Object oriented approach for structuring data and knowledge • Imprecision and uncertainty in information systems • Fractal modeling and shape and surface processing • Symmetry applications for molecular data The choice of these topics reflects recent developments in information systems technologies. One example is object oriented technology. Recently, research, development and applications have been using object-oriented modeling for computer handling of data and data management. Object oriented technology offers increasingly easy-to-use software applications and operating systems. As a result, science and technology research and applications can now provide more flexible and effective services.



Big And Complex Data Analysis


Big And Complex Data Analysis
DOWNLOAD
Author : S. Ejaz Ahmed
language : en
Publisher: Springer
Release Date : 2017-03-21

Big And Complex Data Analysis written by S. Ejaz Ahmed and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-03-21 with Mathematics categories.


This volume conveys some of the surprises, puzzles and success stories in high-dimensional and complex data analysis and related fields. Its peer-reviewed contributions showcase recent advances in variable selection, estimation and prediction strategies for a host of useful models, as well as essential new developments in the field. The continued and rapid advancement of modern technology now allows scientists to collect data of increasingly unprecedented size and complexity. Examples include epigenomic data, genomic data, proteomic data, high-resolution image data, high-frequency financial data, functional and longitudinal data, and network data. Simultaneous variable selection and estimation is one of the key statistical problems involved in analyzing such big and complex data. The purpose of this book is to stimulate research and foster interaction between researchers in the area of high-dimensional data analysis. More concretely, its goals are to: 1) highlight and expand the breadth of existing methods in big data and high-dimensional data analysis and their potential for the advancement of both the mathematical and statistical sciences; 2) identify important directions for future research in the theory of regularization methods, in algorithmic development, and in methodologies for different application areas; and 3) facilitate collaboration between theoretical and subject-specific researchers.



R For Data Science


R For Data Science
DOWNLOAD
Author : Hadley Wickham
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2016-12-12

R For Data Science written by Hadley Wickham and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-12-12 with Computers categories.


Learn how to use R to turn raw data into insight, knowledge, and understanding. This book introduces you to R, RStudio, and the tidyverse, a collection of R packages designed to work together to make data science fast, fluent, and fun. Suitable for readers with no previous programming experience, R for Data Science is designed to get you doing data science as quickly as possible. Authors Hadley Wickham and Garrett Grolemund guide you through the steps of importing, wrangling, exploring, and modeling your data and communicating the results. You'll get a complete, big-picture understanding of the data science cycle, along with basic tools you need to manage the details. Each section of the book is paired with exercises to help you practice what you've learned along the way. You'll learn how to: Wrangle—transform your datasets into a form convenient for analysis Program—learn powerful R tools for solving data problems with greater clarity and ease Explore—examine your data, generate hypotheses, and quickly test them Model—provide a low-dimensional summary that captures true "signals" in your dataset Communicate—learn R Markdown for integrating prose, code, and results



The Data Warehouse Toolkit


The Data Warehouse Toolkit
DOWNLOAD
Author : Ralph Kimball
language : en
Publisher: John Wiley & Sons
Release Date : 2011-08-08

The Data Warehouse Toolkit written by Ralph Kimball and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-08-08 with Computers categories.


This old edition was published in 2002. The current and final edition of this book is The Data Warehouse Toolkit: The Definitive Guide to Dimensional Modeling, 3rd Edition which was published in 2013 under ISBN: 9781118530801. The authors begin with fundamental design recommendations and gradually progress step-by-step through increasingly complex scenarios. Clear-cut guidelines for designing dimensional models are illustrated using real-world data warehouse case studies drawn from a variety of business application areas and industries, including: Retail sales and e-commerce Inventory management Procurement Order management Customer relationship management (CRM) Human resources management Accounting Financial services Telecommunications and utilities Education Transportation Health care and insurance By the end of the book, you will have mastered the full range of powerful techniques for designing dimensional databases that are easy to understand and provide fast query response. You will also learn how to create an architected framework that integrates the distributed data warehouse using standardized dimensions and facts.



Analysis Of Large And Complex Data


Analysis Of Large And Complex Data
DOWNLOAD
Author : Adalbert F.X. Wilhelm
language : en
Publisher: Springer
Release Date : 2016-08-03

Analysis Of Large And Complex Data written by Adalbert F.X. Wilhelm and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-08-03 with Computers categories.


This book offers a snapshot of the state-of-the-art in classification at the interface between statistics, computer science and application fields. The contributions span a broad spectrum, from theoretical developments to practical applications; they all share a strong computational component. The topics addressed are from the following fields: Statistics and Data Analysis; Machine Learning and Knowledge Discovery; Data Analysis in Marketing; Data Analysis in Finance and Economics; Data Analysis in Medicine and the Life Sciences; Data Analysis in the Social, Behavioural, and Health Care Sciences; Data Analysis in Interdisciplinary Domains; Classification and Subject Indexing in Library and Information Science. The book presents selected papers from the Second European Conference on Data Analysis, held at Jacobs University Bremen in July 2014. This conference unites diverse researchers in the pursuit of a common topic, creating truly unique synergies in the process.



Big Data In Complex Systems


Big Data In Complex Systems
DOWNLOAD
Author : Aboul Ella Hassanien
language : en
Publisher: Springer
Release Date : 2015-01-02

Big Data In Complex Systems written by Aboul Ella Hassanien and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-01-02 with Technology & Engineering categories.


This volume provides challenges and Opportunities with updated, in-depth material on the application of Big data to complex systems in order to find solutions for the challenges and problems facing big data sets applications. Much data today is not natively in structured format; for example, tweets and blogs are weakly structured pieces of text, while images and video are structured for storage and display, but not for semantic content and search. Therefore transforming such content into a structured format for later analysis is a major challenge. Data analysis, organization, retrieval, and modeling are other foundational challenges treated in this book. The material of this book will be useful for researchers and practitioners in the field of big data as well as advanced undergraduate and graduate students. Each of the 17 chapters in the book opens with a chapter abstract and key terms list. The chapters are organized along the lines of problem description, related works, and analysis of the results and comparisons are provided whenever feasible.



Mixed Effects Models For Complex Data


Mixed Effects Models For Complex Data
DOWNLOAD
Author : Lang Wu
language : en
Publisher: Chapman and Hall/CRC
Release Date : 2009-11-11

Mixed Effects Models For Complex Data written by Lang Wu and has been published by Chapman and Hall/CRC this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-11-11 with Mathematics categories.


Although standard mixed effects models are useful in a range of studies, other approaches must often be used in correlation with them when studying complex or incomplete data. Mixed Effects Models for Complex Data discusses commonly used mixed effects models and presents appropriate approaches to address dropouts, missing data, measurement errors, censoring, and outliers. For each class of mixed effects model, the author reviews the corresponding class of regression model for cross-sectional data. An overview of general models and methods, along with motivating examples After presenting real data examples and outlining general approaches to the analysis of longitudinal/clustered data and incomplete data, the book introduces linear mixed effects (LME) models, generalized linear mixed models (GLMMs), nonlinear mixed effects (NLME) models, and semiparametric and nonparametric mixed effects models. It also includes general approaches for the analysis of complex data with missing values, measurement errors, censoring, and outliers. Self-contained coverage of specific topics Subsequent chapters delve more deeply into missing data problems, covariate measurement errors, and censored responses in mixed effects models. Focusing on incomplete data, the book also covers survival and frailty models, joint models of survival and longitudinal data, robust methods for mixed effects models, marginal generalized estimating equation (GEE) models for longitudinal or clustered data, and Bayesian methods for mixed effects models. Background material In the appendix, the author provides background information, such as likelihood theory, the Gibbs sampler, rejection and importance sampling methods, numerical integration methods, optimization methods, bootstrap, and matrix algebra. Failure to properly address missing data, measurement errors, and other issues in statistical analyses can lead to severely biased or misleading results. This book explores the biases that arise when naïve methods are used and shows which approaches should be used to achieve accurate results in longitudinal data analysis.



Building A Scalable Data Warehouse With Data Vault 2 0


Building A Scalable Data Warehouse With Data Vault 2 0
DOWNLOAD
Author : Daniel Linstedt
language : en
Publisher: Morgan Kaufmann
Release Date : 2015-09-15

Building A Scalable Data Warehouse With Data Vault 2 0 written by Daniel Linstedt and has been published by Morgan Kaufmann this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-09-15 with Computers categories.


The Data Vault was invented by Dan Linstedt at the U.S. Department of Defense, and the standard has been successfully applied to data warehousing projects at organizations of different sizes, from small to large-size corporations. Due to its simplified design, which is adapted from nature, the Data Vault 2.0 standard helps prevent typical data warehousing failures. "Building a Scalable Data Warehouse" covers everything one needs to know to create a scalable data warehouse end to end, including a presentation of the Data Vault modeling technique, which provides the foundations to create a technical data warehouse layer. The book discusses how to build the data warehouse incrementally using the agile Data Vault 2.0 methodology. In addition, readers will learn how to create the input layer (the stage layer) and the presentation layer (data mart) of the Data Vault 2.0 architecture including implementation best practices. Drawing upon years of practical experience and using numerous examples and an easy to understand framework, Dan Linstedt and Michael Olschimke discuss: - How to load each layer using SQL Server Integration Services (SSIS), including automation of the Data Vault loading processes. - Important data warehouse technologies and practices. - Data Quality Services (DQS) and Master Data Services (MDS) in the context of the Data Vault architecture. - Provides a complete introduction to data warehousing, applications, and the business context so readers can get-up and running fast - Explains theoretical concepts and provides hands-on instruction on how to build and implement a data warehouse - Demystifies data vault modeling with beginning, intermediate, and advanced techniques - Discusses the advantages of the data vault approach over other techniques, also including the latest updates to Data Vault 2.0 and multiple improvements to Data Vault 1.0



Data Science In Theory And Practice


Data Science In Theory And Practice
DOWNLOAD
Author : Maria Cristina Mariani
language : en
Publisher: John Wiley & Sons
Release Date : 2021-10-12

Data Science In Theory And Practice written by Maria Cristina Mariani and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-10-12 with Mathematics categories.


DATA SCIENCE IN THEORY AND PRACTICE EXPLORE THE FOUNDATIONS OF DATA SCIENCE WITH THIS INSIGHTFUL NEW RESOURCE Data Science in Theory and Practice delivers a comprehensive treatment of the mathematical and statistical models useful for analyzing data sets arising in various disciplines, like banking, finance, health care, bioinformatics, security, education, and social services. Written in five parts, the book examines some of the most commonly used and fundamental mathematical and statistical concepts that form the basis of data science. The authors go on to analyze various data transformation techniques useful for extracting information from raw data, long memory behavior, and predictive modeling. The book offers readers a multitude of topics all relevant to the analysis of complex data sets. Along with a robust exploration of the theory underpinning data science, it contains numerous applications to specific and practical problems. The book also provides examples of code algorithms in R and Python and provides pseudo-algorithms to port the code to any other language. Ideal for students and practitioners without a strong background in data science, readers will also learn from topics like: Analyses of foundational theoretical subjects, including the history of data science, matrix algebra and random vectors, and multivariate analysis A comprehensive examination of time series forecasting, including the different components of time series and transformations to achieve stationarity Introductions to both the R and Python programming languages, including basic data types and sample manipulations for both languages An exploration of algorithms, including how to write one and how to perform an asymptotic analysis A comprehensive discussion of several techniques for analyzing and predicting complex data sets Perfect for advanced undergraduate and graduate students in Data Science, Business Analytics, and Statistics programs, Data Science in Theory and Practice will also earn a place in the libraries of practicing data scientists, data and business analysts, and statisticians in the private sector, government, and academia.



Interpretable Machine Learning


Interpretable Machine Learning
DOWNLOAD
Author : Christoph Molnar
language : en
Publisher: Lulu.com
Release Date : 2020

Interpretable Machine Learning written by Christoph Molnar and has been published by Lulu.com this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020 with Computers categories.


This book is about making machine learning models and their decisions interpretable. After exploring the concepts of interpretability, you will learn about simple, interpretable models such as decision trees, decision rules and linear regression. Later chapters focus on general model-agnostic methods for interpreting black box models like feature importance and accumulated local effects and explaining individual predictions with Shapley values and LIME. All interpretation methods are explained in depth and discussed critically. How do they work under the hood? What are their strengths and weaknesses? How can their outputs be interpreted? This book will enable you to select and correctly apply the interpretation method that is most suitable for your machine learning project.