Modeling Of Carbon Nanotubes Graphene And Their Composites


Modeling Of Carbon Nanotubes Graphene And Their Composites
DOWNLOAD eBooks

Download Modeling Of Carbon Nanotubes Graphene And Their Composites PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Modeling Of Carbon Nanotubes Graphene And Their Composites book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page





Modeling Of Carbon Nanotubes Graphene And Their Composites


Modeling Of Carbon Nanotubes Graphene And Their Composites
DOWNLOAD eBooks

Author : Konstantinos I. Tserpes
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-10-15

Modeling Of Carbon Nanotubes Graphene And Their Composites written by Konstantinos I. Tserpes and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-10-15 with Science categories.


A large part of the research currently being conducted in the fields of materials science and engineering mechanics is devoted to carbon nanotubes and their applications. In this process, modeling is a very attractive investigation tool due to the difficulties in manufacturing and testing of nanomaterials. Continuum modeling offers significant advantages over atomistic modeling. Furthermore, the lack of accuracy in continuum methods can be overtaken by incorporating input data either from experiments or atomistic methods. This book reviews the recent progress in continuum modeling of carbon nanotubes and their composites. The advantages and disadvantages of continuum methods over atomistic methods are comprehensively discussed. Numerical models, mainly based on the finite element method, as well as analytical models are presented in a comparative way starting from the simulation of isolated pristine and defected nanotubes and proceeding to nanotube-based composites. The ability of continuum methods to bridge different scales is emphasized. Recommendations for future research are given by focusing on what still continuum methods have to learn from the nano-scale. The scope of the book is to provide current knowledge aiming to support researchers entering the scientific area of carbon nanotubes to choose the appropriate modeling tool for accomplishing their study and place their efforts to further improve continuum methods.



Carbon Nanomaterials Modeling Design And Applications


Carbon Nanomaterials Modeling Design And Applications
DOWNLOAD eBooks

Author : Kun Zhou
language : en
Publisher: CRC Press
Release Date : 2019-07-17

Carbon Nanomaterials Modeling Design And Applications written by Kun Zhou and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-07-17 with Technology & Engineering categories.


Carbon Nanomaterials: Modeling, Design, and Applications provides an in-depth review and analysis of the most popular carbon nanomaterials, including fullerenes, carbon nanotubes, graphene and novel carbon nanomaterial-based membranes and thin films, with emphasis on their modeling, design and applications. This book provides basic knowledge of the structures, properties and applications of carbon-based nanomaterials. It illustrates the fundamental structure-property relationships of the materials in both experimental and modeling aspects, offers technical guidance in computational simulation of nanomaterials, and delivers an extensive view on current achievements in research and practice, while presenting new possibilities in the design and usage of carbon nanomaterials. This book is aimed at both undergraduate and graduate students, researchers, designers, professors, and professionals within the fields of materials science and engineering, mechanical engineering, applied physics, and chemical engineering.



Experimental Characterization Predictive Mechanical And Thermal Modeling Of Nanostructures And Their Polymer Composites


Experimental Characterization Predictive Mechanical And Thermal Modeling Of Nanostructures And Their Polymer Composites
DOWNLOAD eBooks

Author : Francesco Marotti De Sciarra
language : en
Publisher: William Andrew
Release Date : 2018-03-23

Experimental Characterization Predictive Mechanical And Thermal Modeling Of Nanostructures And Their Polymer Composites written by Francesco Marotti De Sciarra and has been published by William Andrew this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-03-23 with Science categories.


Experimental Characterization, Predictive Mechanical and Thermal Modeling of Nanostructures and Their Polymer Composite focuses on the recent observations and predictions regarding the size-dependent mechanical properties, material properties and processing issues of carbon nanotubes (CNTs) and other nanostructured materials. The book takes various approaches, including dedicated characterization methods, theoretical approaches and computer simulations, providing a detailed examination of the fundamental mechanisms governing the deviations of the properties of CNTs and other nanostructured materials. The book explores their applications in materials science, mechanics, engineering, chemistry and physics due to their unique and appealing properties. The use of such materials is, however, still largely limited due to the difficulty in tuning their properties and morphological and structural features. Presents a thorough discussion on how to effectively model the properties of carbon nanotubes and their polymer nanocomposites Includes a size-dependent analysis of properties and multiscale modeling Outlines the fundamentals and procedures of computational modeling as it is applied to carbon nanotubes and other nanomaterials



Recent Developments In Modeling And Applications Of Carbon Nanotubes


Recent Developments In Modeling And Applications Of Carbon Nanotubes
DOWNLOAD eBooks

Author : Q. Wang
language : en
Publisher:
Release Date : 2009-01-01

Recent Developments In Modeling And Applications Of Carbon Nanotubes written by Q. Wang and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-01-01 with categories.


Carbon nanotubes are macromolecules of carbon in a periodic hexagonal arrangement with a cylindrical shell shape. Carbon nanotubes have been subjected to extensive research, with subsequent predictions of extremely high strength and exceptional electronic and thermal properties. They also hold substantial promise as fibers in composites and other devices for the development of superconductive devices for micro-electro-mechanical and nano-electro-mechanical system applications. It is expected that the material has great potential in biological, medical, energy storage, sensor, and other applications. It has been broadly recognized that atomic modeling of carbon nanotube is a powerful tool for analysis of carbon nanotube. Due to massive computations involved, the atomic modeling is limited to systems with a small number of molecules and atoms. On the other hand, attempts at applying continuum mechanics models to better investigate the analysis of carbon nanotube with large sizes have been initiated. However, continuum models are unable to adequately capture the atomic structures of carbon nanotube, and the applicability of the models needs to be justified. Recently, developments of multiscale methods have been proposed to the analysis of carbon nanotube. This book is dedicated to the publication of recent developments in modeling of carbon nanotube via atomic modeling, continuum modeling and multiscale methods for predictions of mechanical, electronic, and thermal properties of carbon nanotube. A wide range of fundamentally theoretical, computational topics on modeling and applications of carbon nanotube will be covered in the book. In addition, applications of carbon nanotubes as nano-devices in atomic and molecular transportations and bistable devices in switching or memory elements in signal processing and communications are also reported. It is with great pleasure that we present this book that covers a very wide and varied range of subject areas in modeling and applications of carbon nanotubes. The first chapter employs molecular dynamics simulations to show macroscopic flows of atomic and molecular hydrogen, helium, and a mixture of both gases both inside and outside a carbon nanotube. In particular, the simulations show a nanoseparation effect of the two gases. The new results in the chapter show the mass selectivity of the nanopumping effect can be used to develop a highly selective filter for various gases. The second chapter introduces a fine continuum model that is developed by virtue of the higher-order continuum theory. Moreover, a mesh-free computational framework is developed to implement the numerical simulation of single- walled carbon nanotubes. The rationality of the higher-order continuum model and the efficiency of mesh-free method are illustrated and discussed in the chapter. The study on the mechanics of buckled single-walled and multiwalled carbon nanotubes, carbon nanotube bundles and coupling effect between adjacent carbon nanotubes is reported in chapter three. Simple expressions of the buckle wavelength, amplitude and critical strain for buckling are given analytically, which show good agreement with experiments. Chapter 4 investigate the applicability of elastic shell model in analysis of graphene and carbon nanotubes. The author reports that the elasticity of graphene should be modeled as a shell composed of 2-dimensional (2D) isotropic materials with proper parameters rather than conventional 3D materials based on calculations by density functional theory. In addition, the elasticity of single-walled carbon nanotube with relative large radius can also be modeled as a shell composed of 2D isotropic materials, whereas the elasticity of single-walled carbon nanotubes with relative small radius should be modeled as a more complicated shell with seven elastic constants rather than the orthotropic thin shell. Mechanical integrity of carbon nanotubes is summarized in chapter 5. Young s modulus for the resistance to the infinitesimal deformation and ultimate strength to the finite deformation are tabled, which have been obtained by experiments, molecular dynamics simulations, and ab-initio calculations. Also the recent continuous modeling of carbon nanotubes is sorted out in tracing its advancement in the chapter. Chapter 6 presents an overview of studies on the wave propagation and the vibrational properties in carbon nanotubes by computational modeling and simulation. The models include the atomic-based continuum model, the Euler-beam model, the Timoshenko beam model, and the three-dimensional elastic shell model. Chapter seven reports the investigations of torsional buckling of both single-walled and double-walled carbon nanotubes. In the study of doubled-walled carbon nanotubes via molecular dynamics, a newly revealed buckling mode with one or three thin local rims on the outer tube is discovered while the inner tube shows a helically aligned buckling mode in three dimensions. The distinct buckling modes of the two tubes imply the inapplicability of continuum mechanics modeling in which it is postulated that the buckling modes of the constituent tubes have the same shape. The mechanical properties of single walled carbon nanotubes under both tensile and torsion are investigated using classical molecular dynamics simulations in chapter 8, based on reactive empirical bond-order potential. Based on the predicted mechanical properties, it is predicted that nanotubes may represent new candidates for novel porous, flexible and high strength and tough materials, e.g. ideal as scaffolds in the regenerative medicine. Bistable devices have been widely used as switching or memory elements in signal processing and communications. The bistablity is generally realized electrically or optically. Due to their small size and unique mechanical properties, carbon nanotubes have been proposed to form bistable devices mechanically. The chapter 9 reviews the recent advances of mechanical bistable devices of carbon nanotubes. In the final chapter, the authors have discussed a theoretical model based on kinetic concept of fracture of solids and molecular mechanics simulations for studying the time-dependent behavior of single-walled carbon nanotubes. The major advantage of this model is that the problem of real-time molecular level simulation is circumvented. Compared with recently published data on creep rupture of SWCNT ropes, it is seen that the predictions by the present model is quite reasonable, thus setting up a framework for modeling the time-dependent behavior of carbon nanotubes and their composites. We would like to extend our sincere thanks to the authors for their contributions, especially their precious time and efforts invested in the book. We also would like to thank Transworld Research Network Publishers for the opportunity to publish the book to address very important and challenging issues. The support and love from our families are deeply appreciated.



Carbon Nanotube Reinforced Polymers


Carbon Nanotube Reinforced Polymers
DOWNLOAD eBooks

Author : Roham Rafiee
language : en
Publisher: Elsevier
Release Date : 2017-10-06

Carbon Nanotube Reinforced Polymers written by Roham Rafiee and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-10-06 with Science categories.


Carbon Nanotube-Reinforced Polymers: From Nanoscale to Macroscale addresses the advances in nanotechnology that have led to the development of a new class of composite materials known as CNT-reinforced polymers. The low density and high aspect ratio, together with their exceptional mechanical, electrical and thermal properties, render carbon nanotubes as a good reinforcing agent for composites. In addition, these simulation and modeling techniques play a significant role in characterizing their properties and understanding their mechanical behavior, and are thus discussed and demonstrated in this comprehensive book that presents the state-of-the-art research in the field of modeling, characterization and processing. The book separates the theoretical studies on the mechanical properties of CNTs and their composites into atomistic modeling and continuum mechanics-based approaches, including both analytical and numerical ones, along with multi-scale modeling techniques. Different efforts have been done in this field to address the mechanical behavior of isolated CNTs and their composites by numerous researchers, signaling that this area of study is ongoing. Explains modeling approaches to carbon nanotubes, together with their application, strengths and limitations Outlines the properties of different carbon nanotube-based composites, exploring how they are used in the mechanical and structural components Analyzes the behavior of carbon nanotube-based composites in different conditions



2d And 3d Graphene Nanocomposites


2d And 3d Graphene Nanocomposites
DOWNLOAD eBooks

Author : Olga E. Glukhova
language : en
Publisher: CRC Press
Release Date : 2019-10-31

2d And 3d Graphene Nanocomposites written by Olga E. Glukhova and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-10-31 with Science categories.


In recent decades, graphene composites have received considerable attention due to their unique structural features and extraordinary properties. 2D and 3D graphene hybrid structures are widely used in memory, microelectronic, and optoelectronic devices; energy- and power-density supercapacitors; light-emitting diodes; and sensors, batteries, and solar cells. This book covers the fundamental properties of the latest graphene-based 2D and 3D composite materials. The book is a result of the collective work of many highly qualified specialists in the field of experimental and theoretical research on graphene and its derivatives. It describes experimental methods for obtaining and characterizing samples of chemically modified graphene, details conceptual foundations of popular methods for computer modeling of graphene nanostructures, and compiles original computational techniques developed by the chapter authors. It discusses the potential application areas and modifications of graphene-based 2D and 3D composite materials and interprets the interesting physical effects discovered for the first time for graphene materials under consideration. The book is useful for graduate students and researchers as well as specialists in industrial engineering. It will also appeal to those involved in materials science, condensed matter physics, nanotechnology, physical electronics, nano- and optoelectronics.



Carbon Nanotubes


Carbon Nanotubes
DOWNLOAD eBooks

Author : Mohamed Berber
language : en
Publisher: BoD – Books on Demand
Release Date : 2016-07-20

Carbon Nanotubes written by Mohamed Berber and has been published by BoD – Books on Demand this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-07-20 with Science categories.


This book shows the recent advances of the applications of carbon nanotubes (CNTs), in particular, the polymer functionalized carbon nanotubes. It also includes a comprehensive description of carbon nanotubes' preparation, properties, and characterization. Therefore, we have attempted to provide detailed information about the polymer-carbon nanotube composites. With regard to the unique structure and properties of carbon nanotubes, a series of important findings have been reported. The unique properties of carbon nanotubes, including thermal, mechanical, and electrical properties, after polymer functionalization have been documented in detail. This book comprises 18 chapters. The chapters include different applications of polymer functionalization CNTs, e.g. photovoltaic, biomedical, drug delivery, gene delivery, stem cell therapy, thermal therapy, biological detection and imaging, electroanalytical, energy, supercapacitor, and gas sensor applications.



Syntheses And Applications Of Carbon Nanotubes And Their Composites


Syntheses And Applications Of Carbon Nanotubes And Their Composites
DOWNLOAD eBooks

Author : Satoru Suzuki
language : en
Publisher: BoD – Books on Demand
Release Date : 2013-05-09

Syntheses And Applications Of Carbon Nanotubes And Their Composites written by Satoru Suzuki and has been published by BoD – Books on Demand this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-05-09 with Science categories.


Carbon nanotubes are rolled up graphene sheets with a quasi-one-dimensional structure of nanometer-scale diameter. In these last twenty years, carbon nanotubes have attracted much attention from physicists, chemists, material scientists, and electronic device engineers, because of their excellent structural, electronic, optical, chemical and mechanical properties. More recently, demand for innovative industrial applications of carbon nanotubes is increasing. This book covers recent research topics regarding syntheses techniques of carbon nanotubes and nanotube-based composites, and their applications. The chapters in this book will be helpful to many students, engineers and researchers working in the field of carbon nanotubes.



Carbon Nanomaterials Modeling Design And Applications


Carbon Nanomaterials Modeling Design And Applications
DOWNLOAD eBooks

Author : Kun Zhou
language : en
Publisher: CRC Press
Release Date : 2019-07-17

Carbon Nanomaterials Modeling Design And Applications written by Kun Zhou and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-07-17 with Technology & Engineering categories.


Carbon Nanomaterials: Modeling, Design, and Applications provides an in-depth review and analysis of the most popular carbon nanomaterials, including fullerenes, carbon nanotubes, graphene and novel carbon nanomaterial-based membranes and thin films, with emphasis on their modeling, design and applications. This book provides basic knowledge of the structures, properties and applications of carbon-based nanomaterials. It illustrates the fundamental structure-property relationships of the materials in both experimental and modeling aspects, offers technical guidance in computational simulation of nanomaterials, and delivers an extensive view on current achievements in research and practice, while presenting new possibilities in the design and usage of carbon nanomaterials. This book is aimed at both undergraduate and graduate students, researchers, designers, professors, and professionals within the fields of materials science and engineering, mechanical engineering, applied physics, and chemical engineering.



Carbon Nanotubes


Carbon Nanotubes
DOWNLOAD eBooks

Author : Andy Nieto
language : en
Publisher: CRC Press
Release Date : 2021-05-18

Carbon Nanotubes written by Andy Nieto and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-05-18 with Technology & Engineering categories.


This discovery of carbon nanotubes (CNT) three decades ago ushered in the technological era of nanotechnology. Among the most widely studied areas of CNT research is their use as structural reinforcements in composites. This book describes the development of CNT reinforced metal matrix composites (CNT-MMCs) over the last two decades. The field of CNT-MMCs is abundant in fundamental science, rich in engineering challenges and innovations and ripe for technological maturation and commercialization. The authors have sought to present the current state of the-art in CNT-MMC technology from their synthesis to their myriad potential end-use applications. Specifically, topics explored include: • Advantages, limitations, and evolution of processing techniques used to synthesize and fabricate CNT-MMCs • Emphasizes dispersion techniques of CNTs in metallic systems, a key challenge to the successful and widespread implementation of CNT-MMCs. Methods for quantification and improved control of CNT distributions are presented • Methods for quantification and improved control of CNT distributions are presented • Characterization techniques uniquely suited for charactering these nanoscale materials and their many chemical and physical interactions with the metal matrix, including real-time in-situ characterization of deformation mechanisms • Electron microscope images from premier studies enrich discussions on micro-mechanical modeling, interfacial design, mechanical behavior, and functional properties • A chapter is dedicated to the emergence of dual reinforcement composites that seek to enhance the efficacy of CNTs and lead to material properties by design This book highlights seminal findings in CNT-MMC research and includes several tables listing processing methods, associated CNT states, and resulting properties in order to aid the next generation of researchers in advancing the science and engineering of CNT-MMCs. In addition, a survey of the patent literature is presented in order to shed light on what the first wave of CNT-MMC commercialization may look like and the challenges that will have to be overcome, both technologically and commercially.