[PDF] Modeling Stochastic Control Optimization And Applications - eBooks Review

Modeling Stochastic Control Optimization And Applications


Modeling Stochastic Control Optimization And Applications
DOWNLOAD

Download Modeling Stochastic Control Optimization And Applications PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Modeling Stochastic Control Optimization And Applications book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Modeling Stochastic Control Optimization And Applications


Modeling Stochastic Control Optimization And Applications
DOWNLOAD
Author : George Yin
language : en
Publisher: Springer
Release Date : 2019-07-16

Modeling Stochastic Control Optimization And Applications written by George Yin and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-07-16 with Mathematics categories.


This volume collects papers, based on invited talks given at the IMA workshop in Modeling, Stochastic Control, Optimization, and Related Applications, held at the Institute for Mathematics and Its Applications, University of Minnesota, during May and June, 2018. There were four week-long workshops during the conference. They are (1) stochastic control, computation methods, and applications, (2) queueing theory and networked systems, (3) ecological and biological applications, and (4) finance and economics applications. For broader impacts, researchers from different fields covering both theoretically oriented and application intensive areas were invited to participate in the conference. It brought together researchers from multi-disciplinary communities in applied mathematics, applied probability, engineering, biology, ecology, and networked science, to review, and substantially update most recent progress. As an archive, this volume presents some of the highlights of the workshops, and collect papers covering a broad range of topics.



Lectures On Stochastic Programming


Lectures On Stochastic Programming
DOWNLOAD
Author : Alexander Shapiro
language : en
Publisher: SIAM
Release Date : 2009-10-08

Lectures On Stochastic Programming written by Alexander Shapiro and has been published by SIAM this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-10-08 with Mathematics categories.


A comprehensive treatment of optimization problems involving uncertain parameters for which stochastic models are available.



Stochastic Multi Stage Optimization


Stochastic Multi Stage Optimization
DOWNLOAD
Author : Pierre Carpentier
language : en
Publisher:
Release Date : 2015

Stochastic Multi Stage Optimization written by Pierre Carpentier and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015 with categories.


The focus of the present volume is stochastic optimization of dynamical systems in discrete time where - by concentrating on the role of information regarding optimization problems - it discusses the related discretization issues. There is a growing need to tackle uncertainty in applications of optimization. For example the massive introduction of renewable energies in power systems challenges traditional ways to manage them. This book lays out basic and advanced tools to handle and numerically solve such problems and thereby is building a bridge between Stochastic Programming and Stochastic Control. It is intended for graduates readers and scholars in optimization or stochastic control, as well as engineers with a background in applied mathematics.



Stochastic Optimization


Stochastic Optimization
DOWNLOAD
Author : Stanislav Uryasev
language : en
Publisher: Springer Science & Business Media
Release Date : 2001-05-31

Stochastic Optimization written by Stanislav Uryasev and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2001-05-31 with Technology & Engineering categories.


Stochastic programming is the study of procedures for decision making under the presence of uncertainties and risks. Stochastic programming approaches have been successfully used in a number of areas such as energy and production planning, telecommunications, and transportation. Recently, the practical experience gained in stochastic programming has been expanded to a much larger spectrum of applications including financial modeling, risk management, and probabilistic risk analysis. Major topics in this volume include: (1) advances in theory and implementation of stochastic programming algorithms; (2) sensitivity analysis of stochastic systems; (3) stochastic programming applications and other related topics. Audience: Researchers and academies working in optimization, computer modeling, operations research and financial engineering. The book is appropriate as supplementary reading in courses on optimization and financial engineering.



Numerical Methods For Stochastic Control Problems In Continuous Time


Numerical Methods For Stochastic Control Problems In Continuous Time
DOWNLOAD
Author : Harold J. Kushner
language : en
Publisher: Springer Science & Business Media
Release Date : 2001

Numerical Methods For Stochastic Control Problems In Continuous Time written by Harold J. Kushner and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2001 with Language Arts & Disciplines categories.


The required background is surveyed, and there is an extensive development of methods of approximation and computational algorithms. The book is written on two levels: algorithms and applications, and mathematical proofs. Thus, the ideas should be very accessible to a broad audience."--BOOK JACKET.



Examples In Markov Decision Processes


Examples In Markov Decision Processes
DOWNLOAD
Author : A. B. Piunovskiy
language : en
Publisher: World Scientific
Release Date : 2012

Examples In Markov Decision Processes written by A. B. Piunovskiy and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012 with Mathematics categories.


This invaluable book provides approximately eighty examples illustrating the theory of controlled discrete-time Markov processes. Except for applications of the theory to real-life problems like stock exchange, queues, gambling, optimal search etc, the main attention is paid to counter-intuitive, unexpected properties of optimization problems. Such examples illustrate the importance of conditions imposed in the theorems on Markov Decision Processes. Many of the examples are based upon examples published earlier in journal articles or textbooks while several other examples are new. The aim was to collect them together in one reference book which should be considered as a complement to existing monographs on Markov decision processes.The book is self-contained and unified in presentation.The main theoretical statements and constructions are provided, and particular examples can be read independently of others. Examples in Markov Decision Processes is an essential source of reference for mathematicians and all those who apply the optimal control theory to practical purposes. When studying or using mathematical methods, the researcher must understand what can happen if some of the conditions imposed in rigorous theorems are not satisfied. Many examples confirming the importance of such conditions were published in different journal articles which are often difficult to find. This book brings together examples based upon such sources, along with several new ones. In addition, it indicates the areas where Markov decision processes can be used. Active researchers can refer to this book on applicability of mathematical methods and theorems. It is also suitable reading for graduate and research students where they will better understand the theory.



Stochastic Optimal Control In Infinite Dimension


Stochastic Optimal Control In Infinite Dimension
DOWNLOAD
Author : Giorgio Fabbri
language : en
Publisher: Springer
Release Date : 2017-06-22

Stochastic Optimal Control In Infinite Dimension written by Giorgio Fabbri and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-06-22 with Mathematics categories.


Providing an introduction to stochastic optimal control in infinite dimension, this book gives a complete account of the theory of second-order HJB equations in infinite-dimensional Hilbert spaces, focusing on its applicability to associated stochastic optimal control problems. It features a general introduction to optimal stochastic control, including basic results (e.g. the dynamic programming principle) with proofs, and provides examples of applications. A complete and up-to-date exposition of the existing theory of viscosity solutions and regular solutions of second-order HJB equations in Hilbert spaces is given, together with an extensive survey of other methods, with a full bibliography. In particular, Chapter 6, written by M. Fuhrman and G. Tessitore, surveys the theory of regular solutions of HJB equations arising in infinite-dimensional stochastic control, via BSDEs. The book is of interest to both pure and applied researchers working in the control theory of stochastic PDEs, and in PDEs in infinite dimension. Readers from other fields who want to learn the basic theory will also find it useful. The prerequisites are: standard functional analysis, the theory of semigroups of operators and its use in the study of PDEs, some knowledge of the dynamic programming approach to stochastic optimal control problems in finite dimension, and the basics of stochastic analysis and stochastic equations in infinite-dimensional spaces.



Reinforcement Learning And Stochastic Optimization


Reinforcement Learning And Stochastic Optimization
DOWNLOAD
Author : Warren B. Powell
language : en
Publisher: John Wiley & Sons
Release Date : 2022-03-15

Reinforcement Learning And Stochastic Optimization written by Warren B. Powell and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-03-15 with Mathematics categories.


REINFORCEMENT LEARNING AND STOCHASTIC OPTIMIZATION Clearing the jungle of stochastic optimization Sequential decision problems, which consist of “decision, information, decision, information,” are ubiquitous, spanning virtually every human activity ranging from business applications, health (personal and public health, and medical decision making), energy, the sciences, all fields of engineering, finance, and e-commerce. The diversity of applications attracted the attention of at least 15 distinct fields of research, using eight distinct notational systems which produced a vast array of analytical tools. A byproduct is that powerful tools developed in one community may be unknown to other communities. Reinforcement Learning and Stochastic Optimization offers a single canonical framework that can model any sequential decision problem using five core components: state variables, decision variables, exogenous information variables, transition function, and objective function. This book highlights twelve types of uncertainty that might enter any model and pulls together the diverse set of methods for making decisions, known as policies, into four fundamental classes that span every method suggested in the academic literature or used in practice. Reinforcement Learning and Stochastic Optimization is the first book to provide a balanced treatment of the different methods for modeling and solving sequential decision problems, following the style used by most books on machine learning, optimization, and simulation. The presentation is designed for readers with a course in probability and statistics, and an interest in modeling and applications. Linear programming is occasionally used for specific problem classes. The book is designed for readers who are new to the field, as well as those with some background in optimization under uncertainty. Throughout this book, readers will find references to over 100 different applications, spanning pure learning problems, dynamic resource allocation problems, general state-dependent problems, and hybrid learning/resource allocation problems such as those that arose in the COVID pandemic. There are 370 exercises, organized into seven groups, ranging from review questions, modeling, computation, problem solving, theory, programming exercises and a "diary problem" that a reader chooses at the beginning of the book, and which is used as a basis for questions throughout the rest of the book.



Handbook Of Simulation Optimization


Handbook Of Simulation Optimization
DOWNLOAD
Author : Michael C Fu
language : en
Publisher: Springer
Release Date : 2014-11-13

Handbook Of Simulation Optimization written by Michael C Fu and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-11-13 with Business & Economics categories.


The Handbook of Simulation Optimization presents an overview of the state of the art of simulation optimization, providing a survey of the most well-established approaches for optimizing stochastic simulation models and a sampling of recent research advances in theory and methodology. Leading contributors cover such topics as discrete optimization via simulation, ranking and selection, efficient simulation budget allocation, random search methods, response surface methodology, stochastic gradient estimation, stochastic approximation, sample average approximation, stochastic constraints, variance reduction techniques, model-based stochastic search methods and Markov decision processes. This single volume should serve as a reference for those already in the field and as a means for those new to the field for understanding and applying the main approaches. The intended audience includes researchers, practitioners and graduate students in the business/engineering fields of operations research, management science, operations management and stochastic control, as well as in economics/finance and computer science.



Random Iterative Models


Random Iterative Models
DOWNLOAD
Author : Marie Duflo
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-03-09

Random Iterative Models written by Marie Duflo and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-03-09 with Mathematics categories.


Be they random or non-random, iterative methods have progressively gained sway with the development of computer science and automatic control theory. Thus, being easy to conceive and simulate, stochastic processes defined by an iterative formula (linear or functional) have been the subject of many studies. The iterative structure often leads to simpler and more explicit arguments than certain classical theories of processes. On the other hand, when it comes to choosing step-by-step decision algorithms (sequential statistics, control, learning, ... ) recursive decision methods are indispensable. They lend themselves naturally to problems of the identification and control of iterative stochastic processes. In recent years, know-how in this area has advanced greatly; this is reflected in the corresponding theoretical problems, many of which remain open. At Whom Is This Book Aimed? I thought it useful to present the basic ideas and tools relating to random iterative models in a form accessible to a mathematician familiar with the classical concepts of probability and statistics but lacking experience in automatic control theory. Thus, the first aim of this book is to show young research workers that work in this area is varied and interesting and to facilitate their initiation period. The second aim is to present more seasoned probabilists with a number of recent original techniques and arguments relating to iterative methods in a fairly classical environment.