[PDF] Modeling With Data - eBooks Review

Modeling With Data


Modeling With Data
DOWNLOAD

Download Modeling With Data PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Modeling With Data book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Mastering Data Modeling


Mastering Data Modeling
DOWNLOAD
Author : John Carlis
language : en
Publisher: Addison-Wesley Professional
Release Date : 2000-11-10

Mastering Data Modeling written by John Carlis and has been published by Addison-Wesley Professional this book supported file pdf, txt, epub, kindle and other format this book has been release on 2000-11-10 with Computers categories.


Data modeling is one of the most critical phases in the database application development process, but also the phase most likely to fail. A master data modeler must come into any organization, understand its data requirements, and skillfully model the data for applications that most effectively serve organizational needs. Mastering Data Modeling is a complete guide to becoming a successful data modeler. Featuring a requirements-driven approach, this book clearly explains fundamental concepts, introduces a user-oriented data modeling notation, and describes a rigorous, step-by-step process for collecting, modeling, and documenting the kinds of data that users need. Assuming no prior knowledge, Mastering Data Modeling sets forth several fundamental problems of data modeling, such as reconciling the software developer's demand for rigor with the users' equally valid need to speak their own (sometimes vague) natural language. In addition, it describes the good habits that help you respond to these fundamental problems. With these good habits in mind, the book describes the Logical Data Structure (LDS) notation and the process of controlled evolution by which you can create low-cost, user-approved data models that resist premature obsolescence. Also included is an encyclopedic analysis of all data shapes that you will encounter. Most notably, the book describes The Flow, a loosely scripted process by which you and the users gradually but continuously improve an LDS until it faithfully represents the information needs. Essential implementation and technology issues are also covered. You will learn about such vital topics as: The fundamental problems of data modeling The good habits that help a data modeler be effective and economical LDS notation, which encourages these good habits How to read an LDS aloud--in declarative English sentences How to write a well-formed (syntactically correct) LDS How to get users to name the parts of an LDS with words from their own business vocabulary How to visualize data for an LDS A catalog of LDS shapes that recur throughout all data models The Flow--the template for your conversations with users How to document an LDS for users, data modelers, and technologists How to map an LDS to a relational schema How LDS differs from other notations and why "Story interludes" appear throughout the book, illustrating real-world successes of the LDS notation and controlled evolution process. Numerous exercises help you master critical skills. In addition, two detailed, annotated sample conversations with users show you the process of controlled evolution in action.



Patterns Of Data Modeling


Patterns Of Data Modeling
DOWNLOAD
Author : Michael Blaha
language : en
Publisher: CRC Press
Release Date : 2010-06-01

Patterns Of Data Modeling written by Michael Blaha and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-06-01 with Computers categories.


Best-selling author and database expert with more than 25 years of experience modeling application and enterprise data, Dr. Michael Blaha provides tried and tested data model patterns, to help readers avoid common modeling mistakes and unnecessary frustration on their way to building effective data models. Unlike the typical methodology book, Patterns of Data Modeling provides advanced techniques for those who have mastered the basics. Recognizing that database representation sets the path for software, determines its flexibility, affects its quality, and influences whether it succeeds or fails, the text focuses on databases rather than programming. It is one of the first books to apply the popular patterns perspective to database systems and data models. It offers practical advice on the core aspects of applications and provides authoritative coverage of mathematical templates, antipatterns, archetypes, identity, canonical models, and relational database design.



Data Modeling


Data Modeling
DOWNLOAD
Author : G. Lawrence Sanders
language : en
Publisher: Course Technology
Release Date : 1995

Data Modeling written by G. Lawrence Sanders and has been published by Course Technology this book supported file pdf, txt, epub, kindle and other format this book has been release on 1995 with Computers categories.


Perfect for professionals seeking a practical handle on systems analysis and design and advanced database management, this book is a unique, hands-on look at data modeling--a topic of increasing importance in object-oriented programming.



Applied Statistical Modeling And Data Analytics


Applied Statistical Modeling And Data Analytics
DOWNLOAD
Author : Srikanta Mishra
language : en
Publisher: Elsevier
Release Date : 2017-10-27

Applied Statistical Modeling And Data Analytics written by Srikanta Mishra and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-10-27 with Science categories.


Applied Statistical Modeling and Data Analytics: A Practical Guide for the Petroleum Geosciences provides a practical guide to many of the classical and modern statistical techniques that have become established for oil and gas professionals in recent years. It serves as a "how to" reference volume for the practicing petroleum engineer or geoscientist interested in applying statistical methods in formation evaluation, reservoir characterization, reservoir modeling and management, and uncertainty quantification. Beginning with a foundational discussion of exploratory data analysis, probability distributions and linear regression modeling, the book focuses on fundamentals and practical examples of such key topics as multivariate analysis, uncertainty quantification, data-driven modeling, and experimental design and response surface analysis. Data sets from the petroleum geosciences are extensively used to demonstrate the applicability of these techniques. The book will also be useful for professionals dealing with subsurface flow problems in hydrogeology, geologic carbon sequestration, and nuclear waste disposal. - Authored by internationally renowned experts in developing and applying statistical methods for oil & gas and other subsurface problem domains - Written by practitioners for practitioners - Presents an easy to follow narrative which progresses from simple concepts to more challenging ones - Includes online resources with software applications and practical examples for the most relevant and popular statistical methods, using data sets from the petroleum geosciences - Addresses the theory and practice of statistical modeling and data analytics from the perspective of petroleum geoscience applications



Data Modeling A Beginner S Guide


Data Modeling A Beginner S Guide
DOWNLOAD
Author : Andy Oppel
language : en
Publisher: McGraw Hill Professional
Release Date : 2009-11-23

Data Modeling A Beginner S Guide written by Andy Oppel and has been published by McGraw Hill Professional this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-11-23 with Computers categories.


Essential Skills--Made Easy! Learn how to create data models that allow complex data to be analyzed, manipulated, extracted, and reported upon accurately. Data Modeling: A Beginner's Guide teaches you techniques for gathering business requirements and using them to produce conceptual, logical, and physical database designs. You'll get details on Unified Modeling Language (UML), normalization, incorporating business rules, handling temporal data, and analytical database design. The methods presented in this fast-paced tutorial are applicable to any database management system, regardless of vendor. Designed for Easy Learning Key Skills & Concepts--Chapter-opening lists of specific skills covered in the chapter Ask the expert--Q&A sections filled with bonus information and helpful tips Try This--Hands-on exercises that show you how to apply your skills Notes--Extra information related to the topic being covered Self Tests--Chapter-ending quizzes to test your knowledge Andy Oppel has taught database technology for the University of California Extension for more than 25 years. He is the author of Databases Demystified, SQL Demystified, and Databases: A Beginner's Guide, and the co-author of SQL: A Beginner's Guide, Third Edition, and SQL: The Complete Reference, Third Edition.



R For Data Science


R For Data Science
DOWNLOAD
Author : Hadley Wickham
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2016-12-12

R For Data Science written by Hadley Wickham and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-12-12 with Computers categories.


Learn how to use R to turn raw data into insight, knowledge, and understanding. This book introduces you to R, RStudio, and the tidyverse, a collection of R packages designed to work together to make data science fast, fluent, and fun. Suitable for readers with no previous programming experience, R for Data Science is designed to get you doing data science as quickly as possible. Authors Hadley Wickham and Garrett Grolemund guide you through the steps of importing, wrangling, exploring, and modeling your data and communicating the results. You'll get a complete, big-picture understanding of the data science cycle, along with basic tools you need to manage the details. Each section of the book is paired with exercises to help you practice what you've learned along the way. You'll learn how to: Wrangle—transform your datasets into a form convenient for analysis Program—learn powerful R tools for solving data problems with greater clarity and ease Explore—examine your data, generate hypotheses, and quickly test them Model—provide a low-dimensional summary that captures true "signals" in your dataset Communicate—learn R Markdown for integrating prose, code, and results



Hands On Big Data Modeling


Hands On Big Data Modeling
DOWNLOAD
Author : James Lee
language : en
Publisher: Packt Publishing Ltd
Release Date : 2018-11-30

Hands On Big Data Modeling written by James Lee and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-11-30 with Computers categories.


Solve all big data problems by learning how to create efficient data models Key FeaturesCreate effective models that get the most out of big dataApply your knowledge to datasets from Twitter and weather data to learn big dataTackle different data modeling challenges with expert techniques presented in this bookBook Description Modeling and managing data is a central focus of all big data projects. In fact, a database is considered to be effective only if you have a logical and sophisticated data model. This book will help you develop practical skills in modeling your own big data projects and improve the performance of analytical queries for your specific business requirements. To start with, you’ll get a quick introduction to big data and understand the different data modeling and data management platforms for big data. Then you’ll work with structured and semi-structured data with the help of real-life examples. Once you’ve got to grips with the basics, you’ll use the SQL Developer Data Modeler to create your own data models containing different file types such as CSV, XML, and JSON. You’ll also learn to create graph data models and explore data modeling with streaming data using real-world datasets. By the end of this book, you’ll be able to design and develop efficient data models for varying data sizes easily and efficiently. What you will learnGet insights into big data and discover various data modelsExplore conceptual, logical, and big data modelsUnderstand how to model data containing different file typesRun through data modeling with examples of Twitter, Bitcoin, IMDB and weather data modelingCreate data models such as Graph Data and Vector SpaceModel structured and unstructured data using Python and RWho this book is for This book is great for programmers, geologists, biologists, and every professional who deals with spatial data. If you want to learn how to handle GIS, GPS, and remote sensing data, then this book is for you. Basic knowledge of R and QGIS would be helpful.



Data Modeling Made Simple With Ca Erwin Data Modeler R8


Data Modeling Made Simple With Ca Erwin Data Modeler R8
DOWNLOAD
Author : Donna Burbank
language : en
Publisher: Technics Publications
Release Date : 2011-08-01

Data Modeling Made Simple With Ca Erwin Data Modeler R8 written by Donna Burbank and has been published by Technics Publications this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-08-01 with Computers categories.


Data Modeling Made Simple with CA ERwin Data Modeler r8 will provide the business or IT professional with a practical working knowledge of data modeling concepts and best practices, and how to apply these principles with CA ERwin Data Modeler r8. You’ll build many CA ERwin data models along the way, mastering first the fundamentals and later in the book the more advanced features of CA ERwin Data Modeler. This book combines real-world experience and best practices with down to earth advice, humor, and even cartoons to help you master the following ten objectives: 1. Understand the basics of data modeling and relational theory, and how to apply these skills using CA ERwin Data Modeler 2. Read a data model of any size and complexity with the same confidence as reading a book 3. Understand the difference between conceptual, logical, and physical models, and how to effectively build these models using CA ERwin’s Data Modelers Design Layer Architecture 4. Apply techniques to turn a logical data model into an efficient physical design and vice-versa through forward and reverse engineering, for both ‘top down’ and bottom-up design 5. Learn how to create reusable domains, naming standards, UDPs, and model templates in CA ERwin Data Modeler to reduce modeling time, improve data quality, and increase enterprise consistency 6. Share data model information with various audiences using model formatting and layout techniques, reporting, and metadata exchange 7. Use the new workspace customization features in CA ERwin Data Modeler r8 to create a workflow suited to your own individual needs 8. Leverage the new Bulk Editing features in CA ERwin Data Modeler r8 for mass metadata updates, as well as import/export with Microsoft Excel 9. Compare and merge model changes using CA ERwin Data Modelers Complete Compare features 10. Optimize the organization and layout of your data models through the use of Subject Areas, Diagrams, Display Themes, and more Section I provides an overview of data modeling: what it is, and why it is needed. The basic features of CA ERwin Data Modeler are introduced with a simple, easy-to-follow example. Section II introduces the basic building blocks of a data model, including entities, relationships, keys, and more. How-to examples using CA ERwin Data Modeler are provided for each of these building blocks, as well as ‘real world’ scenarios for context. Section III covers the creation of reusable standards, and their importance in the organization. From standard data modeling constructs such as domains to CA ERwin-specific features such as UDPs, this section covers step-by-step examples of how to create these standards in CA ERwin Data Modeling, from creation, to template building, to sharing standards with end users through reporting and queries. Section IV discusses conceptual, logical, and physical data models, and provides a comprehensive case study using CA ERwin Data Modeler to show the interrelationships between these models using CA ERwin’s Design Layer Architecture. Real world examples are provided from requirements gathering, to working with business sponsors, to the hands-on nitty-gritty details of building conceptual, logical, and physical data models with CA ERwin Data Modeler r8. From the Foreword by Tom Bilcze, President, CA Technologies Modeling Global User Community: Data Modeling Made Simple with CA ERwin Data Modeler r8 is an excellent resource for the ERwin community. The data modeling community is a diverse collection of data professionals with many perspectives of data modeling and different levels of skill and experience. Steve Hoberman and Donna Burbank guide newbie modelers through the basics of data modeling and CA ERwin r8. Through the liberal use of illustrations, the inexperienced data modeler is graphically walked through the components of data models and how to create them in CA ERwin r8. As an experienced data modeler, Steve and Donna give me a handbook for effectively using the new and enhanced features of this release to bring my art form to life. The book delves into advanced modeling topics and techniques by continuing the liberal use of illustrations. It speaks to the importance of a defined data modeling architecture with soundly modeled data to assist the enterprise in understanding of the value of data. It guides me in applying the finishing touches to my data designs.



Modeling Data Irregularities And Structural Complexities In Data Envelopment Analysis


Modeling Data Irregularities And Structural Complexities In Data Envelopment Analysis
DOWNLOAD
Author : Joe Zhu
language : en
Publisher: Springer Science & Business Media
Release Date : 2007-06-08

Modeling Data Irregularities And Structural Complexities In Data Envelopment Analysis written by Joe Zhu and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-06-08 with Business & Economics categories.


In a relatively short period of time, data envelopment analysis (DEA) has grown into a powerful analytical tool for measuring and evaluating performance. DEA is computational at its core and this book is one of several Springer aim to publish on the subject. This work deals with the micro aspects of handling and modeling data issues in DEA problems. It is a handbook treatment dealing with specific data problems, including imprecise data and undesirable outputs.



Applied Data Analysis And Modeling For Energy Engineers And Scientists


Applied Data Analysis And Modeling For Energy Engineers And Scientists
DOWNLOAD
Author : T. Agami Reddy
language : en
Publisher: Springer Science & Business Media
Release Date : 2011-08-09

Applied Data Analysis And Modeling For Energy Engineers And Scientists written by T. Agami Reddy and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-08-09 with Technology & Engineering categories.


Applied Data Analysis and Modeling for Energy Engineers and Scientists fills an identified gap in engineering and science education and practice for both students and practitioners. It demonstrates how to apply concepts and methods learned in disparate courses such as mathematical modeling, probability,statistics, experimental design, regression, model building, optimization, risk analysis and decision-making to actual engineering processes and systems. The text provides a formal structure that offers a basic, broad and unified perspective,while imparting the knowledge, skills and confidence to work in data analysis and modeling. This volume uses numerous solved examples, published case studies from the author’s own research, and well-conceived problems in order to enhance comprehension levels among readers and their understanding of the “processes”along with the tools.