[PDF] Modelling Survival Data In Medical Research - eBooks Review

Modelling Survival Data In Medical Research


Modelling Survival Data In Medical Research
DOWNLOAD

Download Modelling Survival Data In Medical Research PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Modelling Survival Data In Medical Research book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Modelling Survival Data In Medical Research


Modelling Survival Data In Medical Research
DOWNLOAD
Author : David Collett
language : en
Publisher: CRC Press
Release Date : 2015-05-04

Modelling Survival Data In Medical Research written by David Collett and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-05-04 with Mathematics categories.


Modelling Survival Data in Medical Research describes the modelling approach to the analysis of survival data using a wide range of examples from biomedical research.Well known for its nontechnical style, this third edition contains new chapters on frailty models and their applications, competing risks, non-proportional hazards, and dependent censo



Modelling Survival Data In Medical Research


Modelling Survival Data In Medical Research
DOWNLOAD
Author : D. Collett
language : en
Publisher:
Release Date : 2003

Modelling Survival Data In Medical Research written by D. Collett and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2003 with MATHEMATICS categories.


Survival analysis is an active field and many advances, particularly in software, have emerged over the last eight years. Modelling Survival Data in Medical Research, Second Edition updates and expands on the highly successful first edition, which was praised for its clarity, content, and broad-based accessibility. This edition presents the most current and useful modelling techniques in survival data analysis, including recent developments in model checking, parametric models, time-dependent variables, and interval censored data. For this edition, the author has focused the software sections.



Modelling Survival Data In Medical Research Second Edition


Modelling Survival Data In Medical Research Second Edition
DOWNLOAD
Author : David Collett
language : en
Publisher: CRC Press
Release Date : 2003-03-28

Modelling Survival Data In Medical Research Second Edition written by David Collett and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2003-03-28 with Mathematics categories.


Critically acclaimed and resoundingly popular in its first edition, Modelling Survival Data in Medical Research has been thoroughly revised and updated to reflect the many developments and advances--particularly in software--made in the field over the last 10 years. Now, more than ever, it provides an outstanding text for upper-level and graduate courses in survival analysis, biostatistics, and time-to-event analysis.The treatment begins with an introduction to survival analysis and a description of four studies that lead to survival data. Subsequent chapters then use those data sets and others to illustrate the various analytical techniques applicable to such data, including the Cox regression model, the Weibull proportional hazards model, and others. This edition features a more detailed treatment of topics such as parametric models, accelerated failure time models, and analysis of interval-censored data. The author also focuses the software section on the use of SAS, summarising the methods used by the software to generate its output and examining that output in detail. Profusely illustrated with examples and written in the author's trademark, easy-to-follow style, Modelling Survival Data in Medical Research, Second Edition is a thorough, practical guide to survival analysis that reflects current statistical practices.



Modeling Survival Data Extending The Cox Model


Modeling Survival Data Extending The Cox Model
DOWNLOAD
Author : Terry M. Therneau
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-11-11

Modeling Survival Data Extending The Cox Model written by Terry M. Therneau and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-11-11 with Mathematics categories.


Extending the Cox Model is aimed at researchers, practitioners, and graduate students who have some exposure to traditional methods of survival analysis. The emphasis is on semiparametric methods based on the proportional hazards model. The inclusion of examples with SAS and S-PLUS code will make the book accessible to most working statisticians.



Applied Survival Analysis


Applied Survival Analysis
DOWNLOAD
Author : David W. Hosmer, Jr.
language : en
Publisher: John Wiley & Sons
Release Date : 2008-03-07

Applied Survival Analysis written by David W. Hosmer, Jr. and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-03-07 with Mathematics categories.


THE MOST PRACTICAL, UP-TO-DATE GUIDE TO MODELLING AND ANALYZING TIME-TO-EVENT DATA—NOW IN A VALUABLE NEW EDITION Since publication of the first edition nearly a decade ago, analyses using time-to-event methods have increase considerably in all areas of scientific inquiry mainly as a result of model-building methods available in modern statistical software packages. However, there has been minimal coverage in the available literature to9 guide researchers, practitioners, and students who wish to apply these methods to health-related areas of study. Applied Survival Analysis, Second Edition provides a comprehensive and up-to-date introduction to regression modeling for time-to-event data in medical, epidemiological, biostatistical, and other health-related research. This book places a unique emphasis on the practical and contemporary applications of regression modeling rather than the mathematical theory. It offers a clear and accessible presentation of modern modeling techniques supplemented with real-world examples and case studies. Key topics covered include: variable selection, identification of the scale of continuous covariates, the role of interactions in the model, assessment of fit and model assumptions, regression diagnostics, recurrent event models, frailty models, additive models, competing risk models, and missing data. Features of the Second Edition include: Expanded coverage of interactions and the covariate-adjusted survival functions The use of the Worchester Heart Attack Study as the main modeling data set for illustrating discussed concepts and techniques New discussion of variable selection with multivariable fractional polynomials Further exploration of time-varying covariates, complex with examples Additional treatment of the exponential, Weibull, and log-logistic parametric regression models Increased emphasis on interpreting and using results as well as utilizing multiple imputation methods to analyze data with missing values New examples and exercises at the end of each chapter Analyses throughout the text are performed using Stata® Version 9, and an accompanying FTP site contains the data sets used in the book. Applied Survival Analysis, Second Edition is an ideal book for graduate-level courses in biostatistics, statistics, and epidemiologic methods. It also serves as a valuable reference for practitioners and researchers in any health-related field or for professionals in insurance and government.



Bayesian Survival Analysis


Bayesian Survival Analysis
DOWNLOAD
Author : Joseph G. Ibrahim
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-03-09

Bayesian Survival Analysis written by Joseph G. Ibrahim and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-03-09 with Medical categories.


Survival analysis arises in many fields of study including medicine, biology, engineering, public health, epidemiology, and economics. This book provides a comprehensive treatment of Bayesian survival analysis. Several topics are addressed, including parametric models, semiparametric models based on prior processes, proportional and non-proportional hazards models, frailty models, cure rate models, model selection and comparison, joint models for longitudinal and survival data, models with time varying covariates, missing covariate data, design and monitoring of clinical trials, accelerated failure time models, models for mulitivariate survival data, and special types of hierarchial survival models. Also various censoring schemes are examined including right and interval censored data. Several additional topics are discussed, including noninformative and informative prior specificiations, computing posterior qualities of interest, Bayesian hypothesis testing, variable selection, model selection with nonnested models, model checking techniques using Bayesian diagnostic methods, and Markov chain Monte Carlo (MCMC) algorithms for sampling from the posteiror and predictive distributions. The book presents a balance between theory and applications, and for each class of models discussed, detailed examples and analyses from case studies are presented whenever possible. The applications are all essentially from the health sciences, including cancer, AIDS, and the environment. The book is intended as a graduate textbook or a reference book for a one semester course at the advanced masters or Ph.D. level. This book would be most suitable for second or third year graduate students in statistics or biostatistics. It would also serve as a useful reference book for applied or theoretical researchers as well as practitioners.



Modelling Survival Data In Medical Research


Modelling Survival Data In Medical Research
DOWNLOAD
Author : David Collett
language : en
Publisher: CRC Press
Release Date : 2023-05-31

Modelling Survival Data In Medical Research written by David Collett and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-05-31 with Mathematics categories.


Modelling Survival Data in Medical Research, Fourth Edition, describes the analysis of survival data, illustrated using a wide range of examples from biomedical research. Written in a non-technical style, it concentrates on how the techniques are used in practice. Starting with standard methods for summarising survival data, Cox regression and parametric modelling, the book covers many more advanced techniques, including interval-censoring, frailty modelling, competing risks, analysis of multiple events, and dependent censoring. This new edition contains chapters on Bayesian survival analysis and use of the R software. Earlier chapters have been extensively revised and expanded to add new material on several topics. These include methods for assessing the predictive ability of a model, joint models for longitudinal and survival data, and modern methods for the analysis of interval-censored survival data. Features: Presents an accessible account of a wide range of statistical methods for analysing survival data Contains practical guidance on modelling survival data from the author’s many years of experience in teaching and consultancy Shows how Bayesian methods can be used to analyse survival data Includes details on how R can be used to carry out all the methods described, with guidance on the interpretation of the resulting output Contains many real data examples and additional data sets that can be used for coursework All data sets used are available in electronic format from the publisher’s website Modelling Survival Data in Medical Research, Fourth Edition, is an invaluable resource for statisticians in the pharmaceutical industry and biomedical research centres, research scientists and clinicians who are analysing their own data, and students following undergraduate or postgraduate courses in survival analysis.



Introducing Survival And Event History Analysis


Introducing Survival And Event History Analysis
DOWNLOAD
Author : Melinda Mills
language : en
Publisher: SAGE
Release Date : 2011-01-19

Introducing Survival And Event History Analysis written by Melinda Mills and has been published by SAGE this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-01-19 with Social Science categories.


This book is an accessible, practical and comprehensive guide for researchers from multiple disciplines including biomedical, epidemiology, engineering and the social sciences. Written for accessibility, this book will appeal to students and researchers who want to understand the basics of survival and event history analysis and apply these methods without getting entangled in mathematical and theoretical technicalities. Inside, readers are offered a blueprint for their entire research project from data preparation to model selection and diagnostics. Engaging, easy to read, functional and packed with enlightening examples, ‘hands-on’ exercises, conversations with key scholars and resources for both students and instructors, this text allows researchers to quickly master advanced statistical techniques. It is written from the perspective of the ‘user’, making it suitable as both a self-learning tool and graduate-level textbook. Also included are up-to-date innovations in the field, including advancements in the assessment of model fit, unobserved heterogeneity, recurrent events and multilevel event history models. Practical instructions are also included for using the statistical programs of R, STATA and SPSS, enabling readers to replicate the examples described in the text.



Modelling Survival Data In Medical Research Third Edition


Modelling Survival Data In Medical Research Third Edition
DOWNLOAD
Author : David Collett
language : en
Publisher: Chapman and Hall/CRC
Release Date : 2014-12-11

Modelling Survival Data In Medical Research Third Edition written by David Collett and has been published by Chapman and Hall/CRC this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-12-11 with Mathematics categories.


Modelling Survival Data in Medical Research describes the modelling approach to the analysis of survival data using a wide range of examples from biomedical research. Well known for its nontechnical style, this third edition contains new chapters on frailty models and their applications, competing risks, non-proportional hazards, and dependent censoring. It also describes techniques for modelling the occurrence of multiple events and event history analysis. Earlier chapters are now expanded to include new material on a number of topics, including measures of predictive ability and flexible parametric models. Many new data sets and examples are included to illustrate how these techniques are used in modelling survival data. Bibliographic notes and suggestions for further reading are provided at the end of each chapter. Additional data sets to obtain a fuller appreciation of the methodology, or to be used as student exercises, are provided in the appendix. All data sets used in this book are also available in electronic format online. This book is an invaluable resource for statisticians in the pharmaceutical industry, professionals in medical research institutes, scientists and clinicians who are analyzing their own data, and students taking undergraduate or postgraduate courses in survival analysis.



Advanced Survival Models


Advanced Survival Models
DOWNLOAD
Author : Catherine Legrand
language : en
Publisher: CRC Press
Release Date : 2021-03-22

Advanced Survival Models written by Catherine Legrand and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-03-22 with Mathematics categories.


Survival data analysis is a very broad field of statistics, encompassing a large variety of methods used in a wide range of applications, and in particular in medical research. During the last twenty years, several extensions of "classical" survival models have been developed to address particular situations often encountered in practice. This book aims to gather in a single reference the most commonly used extensions, such as frailty models (in case of unobserved heterogeneity or clustered data), cure models (when a fraction of the population will not experience the event of interest), competing risk models (in case of different types of event), and joint survival models for a time-to-event endpoint and a longitudinal outcome. Features Presents state-of-the art approaches for different advanced survival models including frailty models, cure models, competing risk models and joint models for a longitudinal and a survival outcome Uses consistent notation throughout the book for the different techniques presented Explains in which situation each of these models should be used, and how they are linked to specific research questions Focuses on the understanding of the models, their implementation, and their interpretation, with an appropriate level of methodological development for masters students and applied statisticians Provides references to existing R packages and SAS procedure or macros, and illustrates the use of the main ones on real datasets This book is primarily aimed at applied statisticians and graduate students of statistics and biostatistics. It can also serve as an introductory reference for methodological researchers interested in the main extensions of classical survival analysis.