[PDF] Models For Dependent Time Series - eBooks Review

Models For Dependent Time Series


Models For Dependent Time Series
DOWNLOAD

Download Models For Dependent Time Series PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Models For Dependent Time Series book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Models For Dependent Time Series


Models For Dependent Time Series
DOWNLOAD
Author : Granville Tunnicliffe Wilson
language : en
Publisher: CRC Press
Release Date : 2015-07-29

Models For Dependent Time Series written by Granville Tunnicliffe Wilson and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-07-29 with Mathematics categories.


Models for Dependent Time Series addresses the issues that arise and the methodology that can be applied when the dependence between time series is described and modeled. Whether you work in the economic, physical, or life sciences, the book shows you how to draw meaningful, applicable, and statistically valid conclusions from multivariate (or vect



Analysis Of Financial Time Series


Analysis Of Financial Time Series
DOWNLOAD
Author : Ruey S. Tsay
language : en
Publisher: John Wiley & Sons
Release Date : 2010-10-26

Analysis Of Financial Time Series written by Ruey S. Tsay and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-10-26 with Mathematics categories.


This book provides a broad, mature, and systematic introduction to current financial econometric models and their applications to modeling and prediction of financial time series data. It utilizes real-world examples and real financial data throughout the book to apply the models and methods described. The author begins with basic characteristics of financial time series data before covering three main topics: Analysis and application of univariate financial time series The return series of multiple assets Bayesian inference in finance methods Key features of the new edition include additional coverage of modern day topics such as arbitrage, pair trading, realized volatility, and credit risk modeling; a smooth transition from S-Plus to R; and expanded empirical financial data sets. The overall objective of the book is to provide some knowledge of financial time series, introduce some statistical tools useful for analyzing these series and gain experience in financial applications of various econometric methods.



Forecasting Principles And Practice


Forecasting Principles And Practice
DOWNLOAD
Author : Rob J Hyndman
language : en
Publisher: OTexts
Release Date : 2018-05-08

Forecasting Principles And Practice written by Rob J Hyndman and has been published by OTexts this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-05-08 with Business & Economics categories.


Forecasting is required in many situations. Stocking an inventory may require forecasts of demand months in advance. Telecommunication routing requires traffic forecasts a few minutes ahead. Whatever the circumstances or time horizons involved, forecasting is an important aid in effective and efficient planning. This textbook provides a comprehensive introduction to forecasting methods and presents enough information about each method for readers to use them sensibly.



Advanced Time Series Data Analysis


Advanced Time Series Data Analysis
DOWNLOAD
Author : I. Gusti Ngurah Agung
language : en
Publisher: John Wiley & Sons
Release Date : 2018-12-28

Advanced Time Series Data Analysis written by I. Gusti Ngurah Agung and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-12-28 with Mathematics categories.


Introduces the latest developments in forecasting in advanced quantitative data analysis This book presents advanced univariate multiple regressions, which can directly be used to forecast their dependent variables, evaluate their in-sample forecast values, and compute forecast values beyond the sample period. Various alternative multiple regressions models are presented based on a single time series, bivariate, and triple time-series, which are developed by taking into account specific growth patterns of each dependent variables, starting with the simplest model up to the most advanced model. Graphs of the observed scores and the forecast evaluation of each of the models are offered to show the worst and the best forecast models among each set of the models of a specific independent variable. Advanced Time Series Data Analysis: Forecasting Using EViews provides readers with a number of modern, advanced forecast models not featured in any other book. They include various interaction models, models with alternative trends (including the models with heterogeneous trends), and complete heterogeneous models for monthly time series, quarterly time series, and annually time series. Each of the models can be applied by all quantitative researchers. Presents models that are all classroom tested Contains real-life data samples Contains over 350 equation specifications of various time series models Contains over 200 illustrative examples with special notes and comments Applicable for time series data of all quantitative studies Advanced Time Series Data Analysis: Forecasting Using EViews will appeal to researchers and practitioners in forecasting models, as well as those studying quantitative data analysis. It is suitable for those wishing to obtain a better knowledge and understanding on forecasting, specifically the uncertainty of forecast values.



Introduction To Time Series Analysis


Introduction To Time Series Analysis
DOWNLOAD
Author : Mark Pickup
language : en
Publisher: SAGE Publications
Release Date : 2014-10-15

Introduction To Time Series Analysis written by Mark Pickup and has been published by SAGE Publications this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-10-15 with Social Science categories.


Introducing time series methods and their application in social science research, this practical guide to time series models is the first in the field written for a non-econometrics audience. Giving readers the tools they need to apply models to their own research, Introduction to Time Series Analysis, by Mark Pickup, demonstrates the use of—and the assumptions underlying—common models of time series data including finite distributed lag; autoregressive distributed lag; moving average; differenced data; and GARCH, ARMA, ARIMA, and error correction models. “This volume does an excellent job of introducing modern time series analysis to social scientists who are already familiar with basic statistics and the general linear model.” —William G. Jacoby, Michigan State University



Time Series Analysis


Time Series Analysis
DOWNLOAD
Author : Charles W. Ostrom
language : en
Publisher: SAGE
Release Date : 1990

Time Series Analysis written by Charles W. Ostrom and has been published by SAGE this book supported file pdf, txt, epub, kindle and other format this book has been release on 1990 with Mathematics categories.


"The text gives a good basis for understanding the ideas of the time series models and estimation, without overwhelming readers with the complexity of the subject." --Journal of the American Statistical Association Completely revised and updated, this second edition of Time Series Analysis examines techniques for the study of change based on regression analysis. Ostrom demonstrates how these regression techniques may be employed for hypothesis testing, estimating, and forecasting. In addition, analysis strategies for both lagged and nonlagged models are presented and alternative time-dependent processes are explored.



Statistical Learning For Big Dependent Data


Statistical Learning For Big Dependent Data
DOWNLOAD
Author : Daniel Peña
language : en
Publisher: John Wiley & Sons
Release Date : 2021-05-04

Statistical Learning For Big Dependent Data written by Daniel Peña and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-05-04 with Mathematics categories.


Master advanced topics in the analysis of large, dynamically dependent datasets with this insightful resource Statistical Learning with Big Dependent Data delivers a comprehensive presentation of the statistical and machine learning methods useful for analyzing and forecasting large and dynamically dependent data sets. The book presents automatic procedures for modelling and forecasting large sets of time series data. Beginning with some visualization tools, the book discusses procedures and methods for finding outliers, clusters, and other types of heterogeneity in big dependent data. It then introduces various dimension reduction methods, including regularization and factor models such as regularized Lasso in the presence of dynamical dependence and dynamic factor models. The book also covers other forecasting procedures, including index models, partial least squares, boosting, and now-casting. It further presents machine-learning methods, including neural network, deep learning, classification and regression trees and random forests. Finally, procedures for modelling and forecasting spatio-temporal dependent data are also presented. Throughout the book, the advantages and disadvantages of the methods discussed are given. The book uses real-world examples to demonstrate applications, including use of many R packages. Finally, an R package associated with the book is available to assist readers in reproducing the analyses of examples and to facilitate real applications. Analysis of Big Dependent Data includes a wide variety of topics for modeling and understanding big dependent data, like: New ways to plot large sets of time series An automatic procedure to build univariate ARMA models for individual components of a large data set Powerful outlier detection procedures for large sets of related time series New methods for finding the number of clusters of time series and discrimination methods , including vector support machines, for time series Broad coverage of dynamic factor models including new representations and estimation methods for generalized dynamic factor models Discussion on the usefulness of lasso with time series and an evaluation of several machine learning procedure for forecasting large sets of time series Forecasting large sets of time series with exogenous variables, including discussions of index models, partial least squares, and boosting. Introduction of modern procedures for modeling and forecasting spatio-temporal data Perfect for PhD students and researchers in business, economics, engineering, and science: Statistical Learning with Big Dependent Data also belongs to the bookshelves of practitioners in these fields who hope to improve their understanding of statistical and machine learning methods for analyzing and forecasting big dependent data.



Climate Time Series Analysis


Climate Time Series Analysis
DOWNLOAD
Author : Manfred Mudelsee
language : en
Publisher: Springer Science & Business Media
Release Date : 2010-08-26

Climate Time Series Analysis written by Manfred Mudelsee and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-08-26 with Science categories.


Climate is a paradigm of a complex system. Analysing climate data is an exciting challenge, which is increased by non-normal distributional shape, serial dependence, uneven spacing and timescale uncertainties. This book presents bootstrap resampling as a computing-intensive method able to meet the challenge. It shows the bootstrap to perform reliably in the most important statistical estimation techniques: regression, spectral analysis, extreme values and correlation. This book is written for climatologists and applied statisticians. It explains step by step the bootstrap algorithms (including novel adaptions) and methods for confidence interval construction. It tests the accuracy of the algorithms by means of Monte Carlo experiments. It analyses a large array of climate time series, giving a detailed account on the data and the associated climatological questions. This makes the book self-contained for graduate students and researchers.



Dependence Modeling With Copulas


Dependence Modeling With Copulas
DOWNLOAD
Author : Harry Joe
language : en
Publisher: CRC Press
Release Date : 2014-06-26

Dependence Modeling With Copulas written by Harry Joe and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-06-26 with Mathematics categories.


Dependence Modeling with Copulas covers the substantial advances that have taken place in the field during the last 15 years, including vine copula modeling of high-dimensional data. Vine copula models are constructed from a sequence of bivariate copulas. The book develops generalizations of vine copula models, including common and structured factor models that extend from the Gaussian assumption to copulas. It also discusses other multivariate constructions and parametric copula families that have different tail properties and presents extensive material on dependence and tail properties to assist in copula model selection. The author shows how numerical methods and algorithms for inference and simulation are important in high-dimensional copula applications. He presents the algorithms as pseudocode, illustrating their implementation for high-dimensional copula models. He also incorporates results to determine dependence and tail properties of multivariate distributions for future constructions of copula models.



Spatial Regression Models


Spatial Regression Models
DOWNLOAD
Author : Michael D. Ward
language : en
Publisher: SAGE Publications
Release Date : 2018-04-10

Spatial Regression Models written by Michael D. Ward and has been published by SAGE Publications this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-04-10 with Social Science categories.


Spatial Regression Models illustrates the use of spatial analysis in the social sciences within a regression framework and is accessible to readers with no prior background in spatial analysis. The text covers different modeling-related topics for continuous dependent variables, including mapping data on spatial units, creating data from maps, analyzing exploratory spatial data, working with regression models that have spatially dependent regressors, and estimating regression models with spatially correlated error structures. Using social science examples based on real data, the authors illustrate the concepts discussed, and show how to obtain and interpret relevant results. The examples are presented along with the relevant code to replicate all the analysis using the R package for statistical computing. Users can download both the data and computer code to work through all the examples found in the text. New to the Second Edition is a chapter on mapping as data exploration and its role in the research process, updates to all chapters based on substantive and methodological work, as well as software updates, and information on estimation of time-series, cross-sectional spatial models.