[PDF] Models Of Computation For Big Data - eBooks Review

Models Of Computation For Big Data


Models Of Computation For Big Data
DOWNLOAD

Download Models Of Computation For Big Data PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Models Of Computation For Big Data book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Models Of Computation For Big Data


Models Of Computation For Big Data
DOWNLOAD
Author : Rajendra Akerkar
language : en
Publisher: Springer
Release Date : 2018-12-04

Models Of Computation For Big Data written by Rajendra Akerkar and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-12-04 with Computers categories.


The big data tsunami changes the perspective of industrial and academic research in how they address both foundational questions and practical applications. This calls for a paradigm shift in algorithms and the underlying mathematical techniques. There is a need to understand foundational strengths and address the state of the art challenges in big data that could lead to practical impact. The main goal of this book is to introduce algorithmic techniques for dealing with big data sets. Traditional algorithms work successfully when the input data fits well within memory. In many recent application situations, however, the size of the input data is too large to fit within memory. Models of Computation for Big Data, covers mathematical models for developing such algorithms, which has its roots in the study of big data that occur often in various applications. Most techniques discussed come from research in the last decade. The book will be structured as a sequence of algorithmic ideas, theoretical underpinning, and practical use of that algorithmic idea. Intended for both graduate students and advanced undergraduate students, there are no formal prerequisites, but the reader should be familiar with the fundamentals of algorithm design and analysis, discrete mathematics, probability and have general mathematical maturity.



Data Driven Modeling Scientific Computation


Data Driven Modeling Scientific Computation
DOWNLOAD
Author : Jose Nathan Kutz
language : en
Publisher:
Release Date : 2013-08-08

Data Driven Modeling Scientific Computation written by Jose Nathan Kutz and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-08-08 with Computers categories.


Combining scientific computing methods and algorithms with modern data analysis techniques, including basic applications of compressive sensing and machine learning, this book develops techniques that allow for the integration of the dynamics of complex systems and big data. MATLAB is used throughout for mathematical solution strategies.



Big Data Analytics Systems Algorithms Applications


Big Data Analytics Systems Algorithms Applications
DOWNLOAD
Author : C.S.R. Prabhu
language : en
Publisher: Springer Nature
Release Date : 2019-10-14

Big Data Analytics Systems Algorithms Applications written by C.S.R. Prabhu and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-10-14 with Computers categories.


This book provides a comprehensive survey of techniques, technologies and applications of Big Data and its analysis. The Big Data phenomenon is increasingly impacting all sectors of business and industry, producing an emerging new information ecosystem. On the applications front, the book offers detailed descriptions of various application areas for Big Data Analytics in the important domains of Social Semantic Web Mining, Banking and Financial Services, Capital Markets, Insurance, Advertisement, Recommendation Systems, Bio-Informatics, the IoT and Fog Computing, before delving into issues of security and privacy. With regard to machine learning techniques, the book presents all the standard algorithms for learning – including supervised, semi-supervised and unsupervised techniques such as clustering and reinforcement learning techniques to perform collective Deep Learning. Multi-layered and nonlinear learning for Big Data are also covered. In turn, the book highlights real-life case studies on successful implementations of Big Data Analytics at large IT companies such as Google, Facebook, LinkedIn and Microsoft. Multi-sectorial case studies on domain-based companies such as Deutsche Bank, the power provider Opower, Delta Airlines and a Chinese City Transportation application represent a valuable addition. Given its comprehensive coverage of Big Data Analytics, the book offers a unique resource for undergraduate and graduate students, researchers, educators and IT professionals alike.



Big Data Technologies And Applications


Big Data Technologies And Applications
DOWNLOAD
Author : Borko Furht
language : en
Publisher: Springer
Release Date : 2016-09-16

Big Data Technologies And Applications written by Borko Furht and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-09-16 with Computers categories.


The objective of this book is to introduce the basic concepts of big data computing and then to describe the total solution of big data problems using HPCC, an open-source computing platform. The book comprises 15 chapters broken into three parts. The first part, Big Data Technologies, includes introductions to big data concepts and techniques; big data analytics; and visualization and learning techniques. The second part, LexisNexis Risk Solution to Big Data, focuses on specific technologies and techniques developed at LexisNexis to solve critical problems that use big data analytics. It covers the open source High Performance Computing Cluster (HPCC Systems®) platform and its architecture, as well as parallel data languages ECL and KEL, developed to effectively solve big data problems. The third part, Big Data Applications, describes various data intensive applications solved on HPCC Systems. It includes applications such as cyber security, social network analytics including fraud, Ebola spread modeling using big data analytics, unsupervised learning, and image classification. The book is intended for a wide variety of people including researchers, scientists, programmers, engineers, designers, developers, educators, and students. This book can also be beneficial for business managers, entrepreneurs, and investors.



Big Data


Big Data
DOWNLOAD
Author : Kuan-Ching Li
language : en
Publisher: CRC Press
Release Date : 2015-02-23

Big Data written by Kuan-Ching Li and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-02-23 with Computers categories.


As today's organizations are capturing exponentially larger amounts of data than ever, now is the time for organizations to rethink how they digest that data. Through advanced algorithms and analytics techniques, organizations can harness this data, discover hidden patterns, and use the newly acquired knowledge to achieve competitive advantages.Pre



Big Data Analytics


Big Data Analytics
DOWNLOAD
Author : Arun K. Somani
language : en
Publisher: CRC Press
Release Date : 2017-10-30

Big Data Analytics written by Arun K. Somani and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-10-30 with Computers categories.


The proposed book will discuss various aspects of big data Analytics. It will deliberate upon the tools, technology, applications, use cases and research directions in the field. Chapters would be contributed by researchers, scientist and practitioners from various reputed universities and organizations for the benefit of readers.



Recent Advances In Big Data Machine And Deep Learning For Precision Agriculture


Recent Advances In Big Data Machine And Deep Learning For Precision Agriculture
DOWNLOAD
Author : Muhammad Fazal Ijaz
language : en
Publisher: Frontiers Media SA
Release Date : 2024-02-19

Recent Advances In Big Data Machine And Deep Learning For Precision Agriculture written by Muhammad Fazal Ijaz and has been published by Frontiers Media SA this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-02-19 with Science categories.




R For Data Science


R For Data Science
DOWNLOAD
Author : Hadley Wickham
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2016-12-12

R For Data Science written by Hadley Wickham and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-12-12 with Computers categories.


Learn how to use R to turn raw data into insight, knowledge, and understanding. This book introduces you to R, RStudio, and the tidyverse, a collection of R packages designed to work together to make data science fast, fluent, and fun. Suitable for readers with no previous programming experience, R for Data Science is designed to get you doing data science as quickly as possible. Authors Hadley Wickham and Garrett Grolemund guide you through the steps of importing, wrangling, exploring, and modeling your data and communicating the results. You'll get a complete, big-picture understanding of the data science cycle, along with basic tools you need to manage the details. Each section of the book is paired with exercises to help you practice what you've learned along the way. You'll learn how to: Wrangle—transform your datasets into a form convenient for analysis Program—learn powerful R tools for solving data problems with greater clarity and ease Explore—examine your data, generate hypotheses, and quickly test them Model—provide a low-dimensional summary that captures true "signals" in your dataset Communicate—learn R Markdown for integrating prose, code, and results



Big Data Analytics And Knowledge Discovery


Big Data Analytics And Knowledge Discovery
DOWNLOAD
Author : Min Song
language : en
Publisher: Springer Nature
Release Date : 2020-09-10

Big Data Analytics And Knowledge Discovery written by Min Song and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-09-10 with Computers categories.


The volume LNCS 12393 constitutes the papers of the 22nd International Conference Big Data Analytics and Knowledge Discovery which will be held online in September 2020. The 15 full papers presented together with 14 short papers plus 1 position paper in this volume were carefully reviewed and selected from a total of 77 submissions. This volume offers a wide range to following subjects on theoretical and practical aspects of big data analytics and knowledge discovery as a new generation of big data repository, data pre-processing, data mining, text mining, sequences, graph mining, and parallel processing.



Model Management And Analytics For Large Scale Systems


Model Management And Analytics For Large Scale Systems
DOWNLOAD
Author : Bedir Tekinerdogan
language : en
Publisher: Academic Press
Release Date : 2019-09-14

Model Management And Analytics For Large Scale Systems written by Bedir Tekinerdogan and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-09-14 with Computers categories.


Model Management and Analytics for Large Scale Systems covers the use of models and related artefacts (such as metamodels and model transformations) as central elements for tackling the complexity of building systems and managing data. With their increased use across diverse settings, the complexity, size, multiplicity and variety of those artefacts has increased. Originally developed for software engineering, these approaches can now be used to simplify the analytics of large-scale models and automate complex data analysis processes. Those in the field of data science will gain novel insights on the topic of model analytics that go beyond both model-based development and data analytics. This book is aimed at both researchers and practitioners who are interested in model-based development and the analytics of large-scale models, ranging from big data management and analytics, to enterprise domains. The book could also be used in graduate courses on model development, data analytics and data management. - Identifies key problems and offers solution approaches and tools that have been developed or are necessary for model management and analytics - Explores basic theory and background, current research topics, related challenges and the research directions for model management and analytics - Provides a complete overview of model management and analytics frameworks, the different types of analytics (descriptive, diagnostics, predictive and prescriptive), the required modelling and method steps, and important future directions