Molecular Electronics


Molecular Electronics
DOWNLOAD

Download Molecular Electronics PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Molecular Electronics book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page





Molecular Electronics


Molecular Electronics
DOWNLOAD

Author : Juan Carlos Cuevas
language : en
Publisher: World Scientific
Release Date : 2010

Molecular Electronics written by Juan Carlos Cuevas and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010 with Science categories.


1. The birth of molecular electronics. 1.1. Why molecular electronics?. 1.2. A brief history of molecular electronics. 1.3. Scope and structure of the book -- 2. Fabrication of metallic atomic-size contacts. 2.1. Introduction. 2.2. Techniques involving the scanning electron microscope (STM). 2.3. Methods using atomic force microscopes (AFM). 2.4. Contacts between macroscopic wires. 2.5. Transmission electron microscope. 2.6. Mechanically controllable break-junctions (MCBJ). 2.7. Electromigration technique. 2.8. Electrochemical methods. 2.9. Recent developments. 2.10. Electronic transport measurements. 2.11. Exercises -- 3. Contacting single molecules: Experimental techniques. 3.1. Introduction. 3.2. Molecules for molecular electronics. 3.3. Deposition of molecules. 3.4. Contacting single molecules. 3.5. Contacting molecular ensembles. 3.6. Exercises -- 4. The scattering approach to phase-coherent transport in nanocontacts. 4.1. Introduction. 4.2. From mesoscopic conductors to atomic-scale junctions. 4.3. Conductance is transmission : heuristic derivation of the Landauer formula. 4.4. Penetration of a potential barrier : tunnel effect. 4.5. The scattering matrix. 4.6. Multichannel Landauer formula. 4.7. Shot noise. 4.8. Thermal transport and thermoelectric phenomena. 4.9. Limitations of the scattering approach. 4.10. Exercises -- 5. Introduction to Green's function techniques for systems in equilibrium. 5.1. The Schrodinger and Heisenberg pictures. 5.2. Green's functions of a noninteracting electron system. 5.3. Application to tight-binding Hamiltonians. 5.4. Green's functions in time domain. 5.5. Exercises -- 6. Green's functions and Feynman diagrams. 6.1. The interaction picture. 6.2. The time-evolution operator. 6.3. Perturbative expansion of causal Green's functions. 6.4. Wick's theorem. 6.5. Feynman diagrams. 6.6. Feynman diagrams in energy space. 6.7. Electronic self-energy and Dyson's equation. 6.8. Self-consistent diagrammatic theory : the Hartree-Fock approximation. 6.9. The Anderson model and the Kondo effect. 6.10. Final remarks. 6.11. Exercises -- 7. Nonequilibrium Green's functions formalism. 7.1. The Keldysh formalism. 7.2. Diagrammatic expansion in the Keldysh formalism. 7.3. Basic relations and equations in the Keldysh formalism. 7.4. Application of Keldysh formalism to simple transport problems. 7.5. Exercises -- 8. Formulas of the electrical current : exploiting the Keldysh formalism. 8.1. Elastic current : microscopic derivation of the Landauer formula. 8.2. Current through an interacting atomic-scale junction. 8.3. Time-dependent transport in nanoscale junctions. 8.4. Exercises -- 9. Electronic structure I: Tight-binding approach. 9.1. Basics of the tight-binding approach. 9.2. The extended Huckel method. 9.3. Matrix elements in solid state approaches. 9.4. Slater-Koster two-center approximation. 9.5. Some illustrative examples. 9.6. The NRL tight-binding method. 9.7. The tight-binding approach in molecular electronics. 9.8. Exercises -- 10. Electronic structure II : density functional theory. 10.1. Elementary quantum mechanics. 10.2. Early density functional theories. 10.3. The Hohenberg-Kohn theorems. 10.4. The Kohn-Sham approach. 10.5. The exchange-correlation functionals. 10.6. The basic machinery of DFT. 10.7. DFT performance. 10.8. DFT in molecular electronics. 10.9. Exercises -- 11. The conductance of a single atom. 11.1. Landauer approach to conductance: brief reminder. 11.2. Conductance of atomic-scale contacts. 11.3. Conductance histograms. 11.4. Determining the conduction channels. 11.5. The chemical nature of the conduction channels of oneatom contacts. 11.6. Some further issues. 11.7. Conductance fluctuations. 11.8. Atomic chains : parity oscillations in the conductance. 11.9. Concluding remarks. 11.10. Exercises -- 12. Spin-dependent transport in ferromagnetic atomic contacts. 12.1. Conductance of ferromagnetic atomic contacts. 12.2. Magnetoresistance of ferromagnetic atomic contacts. 12.3. Anisotropic magnetoresistance in atomic contacts. 12.4. Concluding remarks and open problems -- 13. Coherent transport through molecular junctions I : basic concepts. 13.1. Identifying the transport mechanism in single-molecule junctions. 13.2. Some lessons from the resonant tunneling model. 13.3. A two-level model. 13.4. Length dependence of the conductance. 13.5. Role of conjugation in [symbol]-electron systems. 13.6. Fano resonances. 13.7. Negative differential resistance. 13.8. Final remarks. 13.9. Exercises -- 14. Coherent transport through molecular junctions II : test-bed molecules. 14.1. Coherent transport through some test-bed molecules. 14.2. Metal-molecule contact : the role of anchoring groups. 14.3. Tuning chemically the conductance : the role of side-groups. 14.4. Controlled STM-based single-molecule experiments. 14.5. Conclusions and open problems -- 15. Single-molecule transistors : Coulomb blockade and Kondo physics. 15.1. Introduction. 15.2. Charging effects in transport through nanoscale devices. 15.3. Single-molecule three-terminal devices. 15.4. Coulomb blockade theory : constant interaction model. 15.5. Towards a theory of Coulomb blockade in molecular transistors. 15.6. Intermediate coupling : cotunneling and Kondo effect. 15.7. Single-molecule transistors : experimental results. 15.8. Exercises -- 16. Vibrationally-induced inelastic current I : experiment. 16.1. Introduction. 16.2. Inelastic electron tunneling spectroscopy (IETS). 16.3. Highly conductive junctions : point-contact spectroscopy (PCS). 16.4. Crossover between PCS and IETS. 16.5. Resonant inelastic electron tunneling spectroscopy (RIETS). 16.6. Summary of vibrational signatures -- 17. Vibrationally-induced inelastic current II : theory. 17.1. Weak electron-phonon coupling regime. 17.2. Intermediate electron-phonon coupling regime. 17.3. Strong electron-phonon coupling regime. 17.4. Concluding remarks and open problems. 17.5. Exercises -- 18. The hopping regime and transport through DNA molecules. 18.1. Signatures of the hopping regime. 18.2. Hopping transport in molecular junctions : experimental examples. 18.3. DNA-based molecular junctions. 18.4. Exercises -- 19. Beyond electrical conductance : shot noise and thermal transport. 19.1. Shot noise in atomic and molecular junctions. 19.2. Heating and heat conduction. 19.3. Thermoelectricity in molecular junctions -- 20. Optical properties of current-carrying molecular junctions. 20.1. Surface-enhanced Raman spectroscopy of molecular junctions. 20.2. Transport mechanisms in irradiated molecular junctions. 20.3. Theory of photon-assisted tunneling. 20.4. Experiments on radiation-induced transport in atomic and molecular junctions. 20.5. Resonant current amplification and other transport phenomena in ac driven molecular junctions. 20.6. Fluorescence from current-carrying molecular junctions. 20.7. Molecular optoelectronic devices. 20.8. Final remarks. 20.9. Exercises -- 21. What is missing in this book?



Organic And Molecular Electronics


Organic And Molecular Electronics
DOWNLOAD

Author : Michael C. Petty
language : en
Publisher: John Wiley & Sons
Release Date : 2019-01-04

Organic And Molecular Electronics written by Michael C. Petty and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-01-04 with Technology & Engineering categories.


An introduction to the interdisciplinary subject of molecular electronics, revised and updated The revised second edition of Organic and Molecular Electronics offers a guide to the fabrication and application of a wide range of electronic devices based around organic materials and low-cost technologies. Since the publication of the first edition, organic electronics has greatly progressed, as evidenced by the myriad companies that have been established to explore the new possibilities. The text contains an introduction into the physics and chemistry of organic materials, and includes a discussion of the means to process the materials into a form (in most cases, a thin film) where they can be exploited in electronic and optoelectronic devices. The text covers the areas of application and potential application that range from chemical and biochemical sensors to plastic light emitting displays. The updated second edition reflects the recent progress in both organic and molecular electronics and: Offers an accessible resource for a wide range of readers Contains a comprehensive text that covers topics including electrical conductivity, optical phenomena, electroactive organic compounds, tools for molecular electronics and much more Includes illustrative examples based on the most recent research Presents problems at the end of each chapter to help reinforce key points Written mainly for engineering students, Organic and Molecular Electronics: From Principles to Practice provides an updated introduction to the interdisciplinary subjects of organic electronics and molecular electronics with detailed examples of applications.



Molecular Electronics And Molecular Electronic Devices


Molecular Electronics And Molecular Electronic Devices
DOWNLOAD

Author : Kristof Sienicki
language : en
Publisher: CRC Press
Release Date : 1993-03-25

Molecular Electronics And Molecular Electronic Devices written by Kristof Sienicki and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 1993-03-25 with Technology & Engineering categories.


Molecular Electronics and Molecular Electronic Devices is a book that provides a comprehensive review of current problems and information regarding all aspects of molecular electronics and molecular electronic devices. Experimental and theoretical aspects of molecular electronics and molecular electronic devices are reviewed by distinguished researchers working in chemistry, physics, computer science, and various areas of biology. These books are excellent references for physicists, chemists, electronics engineers, materials scientists, and researchers interested in molecular electronics and molecular electronic devices.



Electrons In Molecules


Electrons In Molecules
DOWNLOAD

Author : Jean-Pierre Launay
language : en
Publisher: Oxford University Press
Release Date : 2013-10

Electrons In Molecules written by Jean-Pierre Launay and has been published by Oxford University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-10 with Science categories.


The purpose of this book is to provide the reader with essential keys to a unified understanding of the rapidly expanding field of molecular materials and devices: electronic structures and bonding, magnetic, electrical and photo-physical properties, and the mastering of electrons in molecular electronics. Chemists will discover how basic quantum concepts allow us to understand the relations between structures, electronic structures, and properties of molecular entities and assemblies, and to design new molecules and materials. Physicists and engineers will realize how the molecular world fits in with their need for systems flexible enough to check theories or provide original solutions to exciting new scientific and technological challenges. The non-specialist will find out how molecules behave in electronics at the most minute, sub-nanosize level. The comprehensive overview provided in this book is unique and will benefit undergraduate and graduate students in chemistry, materials science, and engineering, as well as researchers wanting a simple introduction to the world of molecular materials.



Nano And Molecular Electronics Handbook


Nano And Molecular Electronics Handbook
DOWNLOAD

Author : Sergey Edward Lyshevski
language : en
Publisher: CRC Press
Release Date : 2018-10-03

Nano And Molecular Electronics Handbook written by Sergey Edward Lyshevski and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-10-03 with Technology & Engineering categories.


There are fundamental and technological limits of conventional microfabrication and microelectronics. Scaling down conventional devices and attempts to develop novel topologies and architectures will soon be ineffective or unachievable at the device and system levels to ensure desired performance. Forward-looking experts continue to search for new paradigms to carry the field beyond the age of microelectronics, and molecular electronics is one of the most promising candidates. The Nano and Molecular Electronics Handbook surveys the current state of this exciting, emerging field and looks toward future developments and opportunities. Molecular and Nano Electronics Explained Explore the fundamentals of device physics, synthesis, and design of molecular processing platforms and molecular integrated circuits within three-dimensional topologies, organizations, and architectures as well as bottom-up fabrication utilizing quantum effects and unique phenomena. Technology in Progress Stay current with the latest results and practical solutions realized for nanoscale and molecular electronics as well as biomolecular electronics and memories. Learn design concepts, device-level modeling, simulation methods, and fabrication technologies used for today's applications and beyond. Reports from the Front Lines of Research Expert innovators discuss the results of cutting-edge research and provide informed and insightful commentary on where this new paradigm will lead. The Nano and Molecular Electronics Handbook ranks among the most complete and authoritative guides to the past, present, and future of this revolutionary area of theory and technology.



Introducing Molecular Electronics


Introducing Molecular Electronics
DOWNLOAD

Author : Gianaurelio Cuniberti
language : en
Publisher: Springer
Release Date : 2006-05-21

Introducing Molecular Electronics written by Gianaurelio Cuniberti and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-05-21 with Science categories.


Klaus von Klitzing Max-Planck-Institut fur ̈ Festk ̈ orperforschung, Heisenbergstraße 1, 70569 Stuttgart, Germany Already many Cassandras have prematurely announced the end of the silicon roadmap and yet, conventional semiconductor-based transistors have been continuously shrinking at a pace which has brought us to nowadays cheap and powerful microelectronics. However it is clear that the traditional scaling laws cannot be applied if unwanted tunnel phenomena or ballistic transport dominate the device properties. It is generally expected, that a combination of silicon CMOS devices with molecular structure will dominate the ?eld of nanoelectronics in 20 years. The visionary ideas of atomic- or molecular-scale electronics already date back thirty years but only recently advanced nanotechnology, including e.g. scanning tunneling methods and mechanically controllable break junctions, have enabled to make distinct progress in this direction. On the level of f- damentalresearch,stateofthearttechniquesallowtomanipulate,imageand probechargetransportthroughuni-molecularsystemsinanincreasinglyc- trolled way. Hence, molecular electronics is reaching a stage of trustable and reproducible experiments. This has lead to a variety of physical and chemical phenomena recently observed for charge currents owing through molecular junctions, posing new challenges to theory. As a result a still increasing n- ber of open questions determines the future agenda in this ?eld.



Molecular Electronics And Molecular Electronic Devices


Molecular Electronics And Molecular Electronic Devices
DOWNLOAD

Author : Kristof Sienicki
language : en
Publisher: CRC Press
Release Date : 1993-09-27

Molecular Electronics And Molecular Electronic Devices written by Kristof Sienicki and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 1993-09-27 with Technology & Engineering categories.


Molecular Electronics and Molecular Electronic Devices is a book that provides a comprehensive review of current problems and information regarding aspects of molecular electronics and molecular electronic devices. Experimental and theoretical aspects of molecular electronics and molecular electronic devices are reviewed by distinguished researchers working in chemistry, physics, computer science, and various areas of biology. These books will be an excellent reference for physicists, chemists, electronics engineers and researchers interested in molecular electronics and molecular electronic devices.



Molecular Electronics


Molecular Electronics
DOWNLOAD

Author : Ioan Baldea
language : en
Publisher: CRC Press
Release Date : 2016-01-05

Molecular Electronics written by Ioan Baldea and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-01-05 with Science categories.


Molecular electronics, an emerging research field at the border of physics, chemistry, and material sciences, has attracted great interest in the last decade. To achieve the ultimate goal of designing molecular electronic devices with the desired functionality and experimental manipulation at the single-molecule level, theoretical understanding of electron transport at the nanoscale is an important prerequisite. This book, a multi-authored volume comprising reviews written by leading scientists, discusses recent advances in the field. It emphasizes the need for studies beyond the low-bias regime, a fact on which the scientific community became aware in the last years. To make the book useful for scientists of various disciplines interested in "learning by doing," each chapter is written in a science/tutorial hybrid style, with its own introduction presenting fundamental concepts and frameworks. The content reflects the strong transdisciplinary efforts needed for substantial progress.



Molecular Electronics


Molecular Electronics
DOWNLOAD

Author : Michael C. Petty
language : en
Publisher: John Wiley & Sons
Release Date : 2008-03-11

Molecular Electronics written by Michael C. Petty and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-03-11 with Technology & Engineering categories.


This consistent and comprehensive text is unique in providing an informed insight into molecular electronics by contrasting the prospects for molecular scale electronics with the continuing development of the inorganic semiconductor industry. Providing a wealth of information on the subject from background material to possible applications, Molecular Electronics contains all the need to know information in one easily accessible place. Speculation about future developments has also been included to give the whole picture of this increasingly popular and important topic.



Molecular Electronics An Introduction To Theory And Experiment 2nd Edition


Molecular Electronics An Introduction To Theory And Experiment 2nd Edition
DOWNLOAD

Author : Elke Scheer
language : en
Publisher: World Scientific
Release Date : 2017-05-19

Molecular Electronics An Introduction To Theory And Experiment 2nd Edition written by Elke Scheer and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-05-19 with Technology & Engineering categories.


Molecular Electronics is self-contained and unified in its presentation. It can be used as a textbook on nanoelectronics by graduate students and advanced undergraduates studying physics and chemistry. In addition, included in this new edition are previously unpublished material that will help researchers gain a deeper understanding into the basic concepts involved in the field of molecular electronics.