Mother Body Phase Transition In The Body Phase Transition In Normal Matrix Model

DOWNLOAD
Download Mother Body Phase Transition In The Body Phase Transition In Normal Matrix Model PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Mother Body Phase Transition In The Body Phase Transition In Normal Matrix Model book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
The Mother Body Phase Transition In The Normal Matrix Model
DOWNLOAD
Author : Pavel M. Bleher
language : en
Publisher: American Mathematical Soc.
Release Date : 2020-09-28
The Mother Body Phase Transition In The Normal Matrix Model written by Pavel M. Bleher and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-09-28 with Mathematics categories.
In this present paper, the authors consider the normal matrix model with cubic plus linear potential.
Mother Body Phase Transition In The Body Phase Transition In Normal Matrix Model
DOWNLOAD
Author : Pavel Bleher
language : en
Publisher:
Release Date : 2020
Mother Body Phase Transition In The Body Phase Transition In Normal Matrix Model written by Pavel Bleher and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020 with Electronic books categories.
The normal matrix model with algebraic potential has gained a lot of attention recently, partially in virtue of its connection to several other topics as quadrature domains, inverse potential problems and the Laplacian growth. In this present paper the authors consider the normal matrix model with cubic plus linear potential. In order to regularize the model, they follow Elbau & Felder and introduce a cut-off. In the large size limit, the eigenvalues of the model accumulate uniformly within a certain domain \Omega that they determine explicitly by finding the rational parametrization of its bo.
Linear Dynamical Systems On Hilbert Spaces Typical Properties And Explicit Examples
DOWNLOAD
Author : S. Grivaux
language : en
Publisher: American Mathematical Soc.
Release Date : 2021-06-21
Linear Dynamical Systems On Hilbert Spaces Typical Properties And Explicit Examples written by S. Grivaux and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-06-21 with Education categories.
We solve a number of questions pertaining to the dynamics of linear operators on Hilbert spaces, sometimes by using Baire category arguments and sometimes by constructing explicit examples. In particular, we prove the following results. (i) A typical hypercyclic operator is not topologically mixing, has no eigen-values and admits no non-trivial invariant measure, but is densely distri-butionally chaotic. (ii) A typical upper-triangular operator with coefficients of modulus 1 on the diagonal is ergodic in the Gaussian sense, whereas a typical operator of the form “diagonal with coefficients of modulus 1 on the diagonal plus backward unilateral weighted shift” is ergodic but has only countably many unimodular eigenvalues; in particular, it is ergodic but not ergodic in the Gaussian sense. (iii) There exist Hilbert space operators which are chaotic and U-frequently hypercyclic but not frequently hypercyclic, Hilbert space operators which are chaotic and frequently hypercyclic but not ergodic, and Hilbert space operators which are chaotic and topologically mixing but not U-frequently hypercyclic. We complement our results by investigating the descriptive complexity of some natural classes of operators defined by dynamical properties.
Double Affine Hecke Algebras And Congruence Groups
DOWNLOAD
Author : Bogdan Ion
language : en
Publisher: American Mathematical Soc.
Release Date : 2021-06-18
Double Affine Hecke Algebras And Congruence Groups written by Bogdan Ion and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-06-18 with Education categories.
The most general construction of double affine Artin groups (DAAG) and Hecke algebras (DAHA) associates such objects to pairs of compatible reductive group data. We show that DAAG/DAHA always admit a faithful action by auto-morphisms of a finite index subgroup of the Artin group of type A2, which descends to a faithful outer action of a congruence subgroup of SL(2, Z)or PSL(2, Z). This was previously known only in some special cases and, to the best of our knowledge, not even conjectured to hold in full generality. It turns out that the structural intricacies of DAAG/DAHA are captured by the underlying semisimple data and, to a large extent, even by adjoint data; we prove our main result by reduction to the adjoint case. Adjoint DAAG/DAHA correspond in a natural way to affine Lie algebras, or more precisely to their affinized Weyl groups, which are the semi-direct products W Q∨ of the Weyl group W with the coroot lattice Q∨. They were defined topologically by van der Lek, and independently, algebraically, by Cherednik. We now describe our results for the adjoint case in greater detail. We first give a new Coxeter-type presentation for adjoint DAAG as quotients of the Coxeter braid groups associated to certain crystallographic diagrams that we call double affine Coxeter diagrams. As a consequence we show that the rank two Artin groups of type A2,B2,G2 act by automorphisms on the adjoint DAAG/DAHA associated to affine Lie algebras of twist number r =1, 2, 3, respec-tively. This extends a fundamental result of Cherednik for r =1. We show further that the above rank two Artin group action descends to an outer action of the congruence subgroup Γ1(r). In particular, Γ1(r) acts naturally on the set of isomorphism classes of representations of an adjoint DAAG/DAHA of twist number r, giving rise to a projective representation of Γ1(r)on the spaceof aΓ1(r)-stable representation. We also provide a classification of the involutions of Kazhdan-Lusztig type that appear in the context of these actions.
Gromov Witten Theory Of Quotients Of Fermat Calabi Yau Varieties
DOWNLOAD
Author : Hiroshi Iritani
language : en
Publisher: American Mathematical Soc.
Release Date : 2021-06-21
Gromov Witten Theory Of Quotients Of Fermat Calabi Yau Varieties written by Hiroshi Iritani and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-06-21 with Education categories.
Gromov-Witten theory started as an attempt to provide a rigorous mathematical foundation for the so-called A-model topological string theory of Calabi-Yau varieties. Even though it can be defined for all the Kähler/symplectic manifolds, the theory on Calabi-Yau varieties remains the most difficult one. In fact, a great deal of techniques were developed for non-Calabi-Yau varieties during the last twenty years. These techniques have only limited bearing on the Calabi-Yau cases. In a certain sense, Calabi-Yau cases are very special too. There are two outstanding problems for the Gromov-Witten theory of Calabi-Yau varieties and they are the focus of our investigation.
Ojasiewicz Simon Gradient Inequalities For Coupled Yang Mills Energy Functionals
DOWNLOAD
Author : Paul M Feehan
language : en
Publisher: American Mathematical Society
Release Date : 2021-02-10
Ojasiewicz Simon Gradient Inequalities For Coupled Yang Mills Energy Functionals written by Paul M Feehan and has been published by American Mathematical Society this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-02-10 with Mathematics categories.
The authors' primary goal in this monograph is to prove Łojasiewicz-Simon gradient inequalities for coupled Yang-Mills energy functions using Sobolev spaces that impose minimal regularity requirements on pairs of connections and sections.
Hecke Operators And Systems Of Eigenvalues On Siegel Cusp Forms
DOWNLOAD
Author : Kazuyuki Hatada
language : en
Publisher: American Mathematical Soc.
Release Date : 2021-06-18
Hecke Operators And Systems Of Eigenvalues On Siegel Cusp Forms written by Kazuyuki Hatada and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-06-18 with Education categories.
View the abstract.
Progress On The Study Of The Ginibre Ensembles
DOWNLOAD
Author : Sung-Soo Byun
language : en
Publisher: Springer Nature
Release Date : 2024-08-20
Progress On The Study Of The Ginibre Ensembles written by Sung-Soo Byun and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-08-20 with Mathematics categories.
This open access book focuses on the Ginibre ensembles that are non-Hermitian random matrices proposed by Ginibre in 1965. Since that time, they have enjoyed prominence within random matrix theory, featuring, for example, the first book on the subject written by Mehta in 1967. Their status has been consolidated and extended over the following years, as more applications have come to light, and the theory has developed to greater depths. This book sets about detailing much of this progress. Themes covered include eigenvalue PDFs and correlation functions, fluctuation formulas, sum rules and asymptotic behaviors, normal matrix models, and applications to quantum many-body problems and quantum chaos. There is a distinction between the Ginibre ensemble with complex entries (GinUE) and those with real or quaternion entries (GinOE and GinSE, respectively). First, the eigenvalues of GinUE form a determinantal point process, while those of GinOE and GinSE have the more complicated structure of a Pfaffian point process. Eigenvalues on the real line in the case of GinOE also provide another distinction. On the other hand, the increased complexity provides new opportunities for research. This is demonstrated in our presentation, which details several applications and contains not previously published theoretical advances. The areas of application are diverse, with examples being diffusion processes and persistence in statistical physics and equilibria counting for a system of random nonlinear differential equations in the study of the stability of complex systems.
The Irreducible Subgroups Of Exceptional Algebraic Groups
DOWNLOAD
Author : Adam R. Thomas
language : en
Publisher: American Mathematical Soc.
Release Date : 2021-06-18
The Irreducible Subgroups Of Exceptional Algebraic Groups written by Adam R. Thomas and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-06-18 with Education categories.
This paper is a contribution to the study of the subgroup structure of excep-tional algebraic groups over algebraically closed fields of arbitrary characteristic. Following Serre, a closed subgroup of a semisimple algebraic group G is called irreducible if it lies in no proper parabolic subgroup of G. In this paper we com-plete the classification of irreducible connected subgroups of exceptional algebraic groups, providing an explicit set of representatives for the conjugacy classes of such subgroups. Many consequences of this classification are also given. These include results concerning the representations of such subgroups on various G-modules: for example, the conjugacy classes of irreducible connected subgroups are determined by their composition factors on the adjoint module of G, with one exception. A result of Liebeck and Testerman shows that each irreducible connected sub-group X of G has only finitely many overgroups and hence the overgroups of X form a lattice. We provide tables that give representatives of each conjugacy class of connected overgroups within this lattice structure. We use this to prove results concerning the subgroup structure of G: for example, when the characteristic is 2, there exists a maximal connected subgroup of G containing a conjugate of every irreducible subgroup A1 of G.
Paley Wiener Theorems For A P Adic Spherical Variety
DOWNLOAD
Author : Patrick Delorme
language : en
Publisher: American Mathematical Soc.
Release Date : 2021-06-21
Paley Wiener Theorems For A P Adic Spherical Variety written by Patrick Delorme and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-06-21 with Education categories.
Let SpXq be the Schwartz space of compactly supported smooth functions on the p-adic points of a spherical variety X, and let C pXq be the space of Harish-Chandra Schwartz functions. Under assumptions on the spherical variety, which are satisfied when it is symmetric, we prove Paley–Wiener theorems for the two spaces, characterizing them in terms of their spectral transforms. As a corollary, we get relative analogs of the smooth and tempered Bernstein centers — rings of multipliers for SpXq and C pXq.WhenX “ a reductive group, our theorem for C pXq specializes to the well-known theorem of Harish-Chandra, and our theorem for SpXq corresponds to a first step — enough to recover the structure of the Bern-stein center — towards the well-known theorems of Bernstein [Ber] and Heiermann [Hei01].