[PDF] Multi Terminal High Voltage Converter - eBooks Review

Multi Terminal High Voltage Converter


Multi Terminal High Voltage Converter
DOWNLOAD

Download Multi Terminal High Voltage Converter PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Multi Terminal High Voltage Converter book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page





Multi Terminal High Voltage Converter


Multi Terminal High Voltage Converter
DOWNLOAD
Author : Bo Zhang
language : en
Publisher: John Wiley & Sons
Release Date : 2018-10-19

Multi Terminal High Voltage Converter written by Bo Zhang and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-10-19 with Science categories.


An all-in-one guide to high-voltage, multi-terminal converters, this book brings together the state of the art and cutting-edge techniques in the various stages of designing and constructing a high-voltage converter. The book includes 9 chapters, and can be classified into three aspects. First, all existing high-voltage converters are introduced, including the conventional two-level converter, and the multi-level converters, such as the modular multi-level converter (MMC). Second, different kinds of multi-terminal high-voltage converters are presented in detail, including the topology, operation principle, control scheme and simulation verification. Third, some common issues of the proposed multi-terminal high-voltage converters are discussed, and different industrial applications of the proposed multi-terminal high-voltage converters are provided. Systematically proposes, for the first time, the design methodology for high-voltage converters in use of MTDC grids; also applicable to constructing novel power electronics converters, and driving the development of HVDC, which is one of the most important technology areas Presents the latest research on multi-terminal high-voltage converters and its application in MTDC transmission systems and other industrially important applications Offers an overview of existing technology and future trends of the high-voltage converter, with extensive discussion and analysis of different types of high-voltage converters and relevant control techniques (including DC-AC, AC-DC, DC-DC, and AC-AC converters) Provides readers with sufficient context to delve into the more specialized topics covered in the book Featuring a series of novel multi-terminal high-voltage converters proposed and patented by the authors, Multi-terminal High Voltage Converters is written for researchers, engineers, and advanced students specializing in power electronics, power system engineering and electrical engineering.



Modeling And Control Of Multi Terminal Voltage Source Converter Based High Voltage Direct Current Mtdc Transmission


Modeling And Control Of Multi Terminal Voltage Source Converter Based High Voltage Direct Current Mtdc Transmission
DOWNLOAD
Author : Chuanlong Zhu
language : en
Publisher:
Release Date : 2011

Modeling And Control Of Multi Terminal Voltage Source Converter Based High Voltage Direct Current Mtdc Transmission written by Chuanlong Zhu and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011 with categories.




Modeling Of Multi Terminal Vsc Based Hvdc Systems


Modeling Of Multi Terminal Vsc Based Hvdc Systems
DOWNLOAD
Author : Mohammed Mabrook Alharbi
language : en
Publisher:
Release Date : 2014

Modeling Of Multi Terminal Vsc Based Hvdc Systems written by Mohammed Mabrook Alharbi and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014 with Electric power systems categories.


"Improving the efficiency and operation of power transmission is important due to the continual increase in demand for electric power. In addition, many remote areas throughout the world lack sufficient access to electricity. Unfortunately, utilities cannot satisfy the high demand of power by building new power stations because of economic and environmental reasons. However, utilities can increase generation and transmission line efficiencies by controlling the power flow through their systems. One new attractive technology that enables the control of power flow in the system is Voltage-Source-Converter High Voltage Direct Current (VSC-HVDC) transmission. Multi-terminal-HVDC (M-HVDC) can be built using VSC technology. A model of a three-terminal VSC-HVDC system is presented in this thesis. One of the converters is used to regulate the DC voltage while the others converters control the active power independently and bi-directionally. The vector control strategy and pulse width modulation (PWM) technique are described and implemented in PSCAD/EMTDC. In addition, the region of controllability as a function of power flow has been analyzed. Furthermore, the steady-state and dynamic response characteristics as a function of capacitor size has been investigated"--Abstract, page iii.



High Voltage Direct Current Transmission


High Voltage Direct Current Transmission
DOWNLOAD
Author : Dragan Jovcic
language : en
Publisher: John Wiley & Sons
Release Date : 2019-07-01

High Voltage Direct Current Transmission written by Dragan Jovcic and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-07-01 with Technology & Engineering categories.


Presents the latest developments in switchgear and DC/DC converters for DC grids, and includes substantially expanded material on MMC HVDC This newly updated edition covers all HVDC transmission technologies including Line Commutated Converter (LCC) HVDC; Voltage Source Converter (VSC) HVDC, and the latest VSC HVDC based on Modular Multilevel Converters (MMC), as well as the principles of building DC transmission grids. Featuring new material throughout, High Voltage Direct Current Transmission: Converters, Systems and DC Grids, 2nd Edition offers several new chapters/sections including one on the newest MMC converters. It also provides extended coverage of switchgear, DC grid protection and DC/DC converters following the latest developments on the market and in research projects. All three HVDC technologies are studied in a wide range of topics, including: the basic converter operating principles; calculation of losses; system modelling, including dynamic modelling; system control; HVDC protection, including AC and DC fault studies; and integration with AC systems and fundamental frequency analysis. The text includes: A chapter dedicated to hybrid and mechanical DC circuit breakers Half bridge and full bridge MMC: modelling, control, start-up and fault management A chapter dedicated to unbalanced operation and control of MMC HVDC The advancement of protection methods for DC grids Wideband and high-order modeling of DC cables Novel treatment of topics not found in similar books, including SimPowerSystems models and examples for all HVDC topologies hosted by the 1st edition companion site. High Voltage Direct Current Transmission: Converters, Systems and DC Grids, 2nd Edition serves as an ideal textbook for a graduate-level course or a professional development course.



Flexible Power Transmission


Flexible Power Transmission
DOWNLOAD
Author : Jos Arrillaga
language : en
Publisher: John Wiley & Sons
Release Date : 2007-09-27

Flexible Power Transmission written by Jos Arrillaga and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-09-27 with Technology & Engineering categories.


The development of power semiconductors with greater ratings and improved characteristics has meant that the power industry has become more willing to develop new converter configurations. These new configurations take advantage of the higher controllability and switching frequencies of the new devices. The next few years will decide which of the proposed technologies will dominate future power transmission systems. Flexible Power Transmission is a comprehensive guide to the high voltage direct current (HVDC) options available, helping the reader to make informed decisions for designing future power transmission systems. The book includes: a full description of the principles and components in existing converter technology, as well as alternative proposals for self-commutating conversion; A review of the state of power semiconductors suited to HVDC transmission and present proposals for multi-level HVDC transmission. a detailed overview of the flexible HVDC methods for improving controllability and increasing power transfer capability in electrical power systems. up-to-date information on thyrisistor-based HVDC technology. coverage of new pulse width modulation (PWM) transmission technology and multi-level voltage source conversion (VSC) and current source conversion (CSC). An excellent reference for professional power engineers, Flexible Power Transmission is also a useful guide for power system researchers as well as lecturers and students in power systems and power electronics disciplines.



Design Control And Application Of Modular Multilevel Converters For Hvdc Transmission Systems


Design Control And Application Of Modular Multilevel Converters For Hvdc Transmission Systems
DOWNLOAD
Author : Kamran Sharifabadi
language : en
Publisher: John Wiley & Sons
Release Date : 2016-08-22

Design Control And Application Of Modular Multilevel Converters For Hvdc Transmission Systems written by Kamran Sharifabadi and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-08-22 with Science categories.


Design, Control and Application of Modular Multilevel Converters for HVDC Transmission Systems is a comprehensive guide to semiconductor technologies applicable for MMC design, component sizing control, modulation, and application of the MMC technology for HVDC transmission. Separated into three distinct parts, the first offers an overview of MMC technology, including information on converter component sizing, Control and Communication, Protection and Fault Management, and Generic Modelling and Simulation. The second covers the applications of MMC in offshore WPP, including planning, technical and economic requirements and optimization options, fault management, dynamic and transient stability. Finally, the third chapter explores the applications of MMC in HVDC transmission and Multi Terminal configurations, including Supergrids. Key features: Unique coverage of the offshore application and optimization of MMC-HVDC schemes for the export of offshore wind energy to the mainland. Comprehensive explanation of MMC application in HVDC and MTDC transmission technology. Detailed description of MMC components, control and modulation, different modeling approaches, converter dynamics under steady-state and fault contingencies including application and housing of MMC in HVDC schemes for onshore and offshore. Analysis of DC fault detection and protection technologies, system studies required for the integration of HVDC terminals to offshore wind power plants, and commissioning procedures for onshore and offshore HVDC terminals. A set of self-explanatory simulation models for HVDC test cases is available to download from the companion website. This book provides essential reading for graduate students and researchers, as well as field engineers and professionals who require an in-depth understanding of MMC technology.



High Voltage Direct Current Transmission


High Voltage Direct Current Transmission
DOWNLOAD
Author : J. Arrillaga
language : en
Publisher: IET
Release Date : 1998-06-30

High Voltage Direct Current Transmission written by J. Arrillaga and has been published by IET this book supported file pdf, txt, epub, kindle and other format this book has been release on 1998-06-30 with Science categories.


This book describes a variety of reasons justifying the use of DC transmission as well as the basic concepts and techniques involved in the AC-DC and DC-AC conversion processes.



Self Commutating Converters For High Power Applications


Self Commutating Converters For High Power Applications
DOWNLOAD
Author : Jos Arrillaga
language : en
Publisher: John Wiley & Sons
Release Date : 2010-01-12

Self Commutating Converters For High Power Applications written by Jos Arrillaga and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-01-12 with Technology & Engineering categories.


For very high voltage or very high current applications, the power industry still relies on thyristor-based Line Commutated Conversion (LCC), which limits the power controllability to two quadrant operation. However, the ratings of self-commutating switches such as the Insulated-Gate Bipolar Transistor (IGBT) and Integrated Gate-Commutated Thyristor (IGCT), are reaching levels that make the technology possible for very high power applications. This unique book reviews the present state and future prospects of self-commutating static power converters for applications requiring either ultra high voltages (over 600 kV) or ultra high currents (in hundreds of kA). It is an important reference for electrical engineers working in the areas of power generation, transmission and distribution, utilities, manufacturing and consulting organizations. All topics in this area are held in this one complete volume. Within these pages, expect to find thorough coverage on: modelling and control of converter dynamics; multi-level Voltage Source Conversion (VSC) and Current Source Conversion (CSC); ultra high-voltage VSC and CSC DC transmission; low voltage high DC current AC-DC conversion; industrial high current applications; power conversion for high energy storage. This text has a host of helpful material that also makes it a useful source of knowledge for final year engineering students specializing in power engineering, and those involved in postgraduate research.



Multilevel Voltage Source Converters In High Voltage Direct Current Transmission Systems


Multilevel Voltage Source Converters In High Voltage Direct Current Transmission Systems
DOWNLOAD
Author : Yushu Zhang
language : en
Publisher:
Release Date : 2012

Multilevel Voltage Source Converters In High Voltage Direct Current Transmission Systems written by Yushu Zhang and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012 with categories.


This research focuses on voltage source multilevel converters in high voltage direct current (HVDC) transmission systems. The first Voltage Source Converter based HVDC (VSC-HVDC) systems with series connected IGBTs in a two-level converter represented a solution to meet industrial and economical requirements but is associated with significant drawbacks such as high dv/dt and di/dt, high switching loss, and poor output voltage and current quality. To overcome these issues, the multilevel converter was proposed for HVDC application. The Modular Multilevel Converter (M2C) was the first multilevel converter to be commercially used in the power industry. In this thesis, the M2C is investigated mainly in terms of operating principle, capacitor size and capacitor voltage ripple, capacitor voltage balancing technique and modulation scheme. The results of this investigation show that the M2C offers the following features: improved efficiency, lower supporting voltage and current in the switching devices and low dv/dt. These features make the M2C suitable for HVDC systems. Two new operational principles and modulation strategies for a Hybrid Cascaded Multilevel Converter (HCMC) are proposed in this thesis. Both modulation schemes extend the modulation index linear range and improve the output waveform quality. This gives the HCMC a higher power density than any known multilevel converter topology for the same dc link voltage and switching device rating. Simulations for both types of multilevel converter (M2C and HCMC) are supported by practical results from scaled hardware laboratory converters. Mathematical analysis and calculation of conversion loss for both types of multilevel converter and for the conventional two-level converter are performed. It is shown that both M2C and HCMC provide lower conversion loss compare to the conventional two-level converter. A control strategy for these two multilevel converters in point-to-point and multi-terminal HVDC systems is also studied. Simulation results show that these two converters are able to operate over the entire specified P-Q capability curve and are capable of riding through ac faults without imposing any over-voltage or over-current on the converter switches.



Emerging Power Converters For Renewable Energy And Electric Vehicles


Emerging Power Converters For Renewable Energy And Electric Vehicles
DOWNLOAD
Author : Md. Rabiul Islam
language : en
Publisher: CRC Press
Release Date : 2021-05-30

Emerging Power Converters For Renewable Energy And Electric Vehicles written by Md. Rabiul Islam and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-05-30 with Technology & Engineering categories.


This book covers advancements of power electronic converters and their control techniques for grid integration of large-scale renewable energy sources and electrical vehicles. Major emphasis is on transformer-less direct grid integration, bidirectional power transfer, compensation of grid power quality issues, DC system protection and grounding, interaction in mixed AC/DC systems, AC and DC system stability, design of high-frequency high power density systems with advanced soft magnetic materials, modeling and simulation of mixed AC/DC systems, switching strategies for enhanced efficiency, and protection and reliability for sustainable grid integration. This book is an invaluable resource for professionals active in the field of renewable energy and power conversion. Md. Rabiul Islam received his PhD from the University of Technology Sydney (UTS), Australia. He was appointed as a Lecturer at Rajshahi University of Engineering & Technology (RUET) in 2005 and promoted to full-term Professor in 2017. In early 2018, he joined the School of Electrical, Computer, and Telecommunications Engineering, University of Wollongong, Australia. He is a Senior Member of IEEE. His research interests include the fields of power electronic converters, renewable energy technologies, power quality, electrical machines, electric vehicles, and smart grids. He has authored or coauthored more than 200 publications including 50 IEEE Transactions/IEEE Journal papers. He has been serving as an editor for IEEE Transactions on Energy Conversion and IEEE Power Engineering Letters, and associate editor for IEEE Access. Md. Rakibuzzaman Shah is a Senior Lecturer with the School of Engineering, Information Technology and Physical Science at Federation University Australia. He has worked and consulted with distribution network operators and transmission system operators on individual projects and has done collaborative work on a large number of projects (EPSRC project on multi-terminal HVDC, Scottish and Southern Energy multi-infeed HVDC) - primarily on the dynamic impact of integrating new technologies and power electronics into large systems. He is an active member of the IEEE and CIGRE. He has more than 70 international publications and has spoken at the leading power system conferences around the world. His research interests include future power grids (i.e., renewable energy integration, wide-area control), asynchronous grid connection through VSC-HVDC, application of data mining in power system, distribution system energy management, and low carbon energy systems. Mohd. Hasan Ali is currently an Associate Professor with the Electrical and Computer Engineering Department at the University of Memphis, USA, where he leads the Electric Power and Energy Systems (EPES) Laboratory. His research interests include advanced power systems, smart-grid and microgrid systems, renewable energy systems, and cybersecurity issues in modern power grids. Dr. Ali has more than 190 publications, including 2 books, 4 book chapters, 2 patents, 60 top ranked journal papers, 96 peer-reviewed international conference papers, and 20 national conference papers. He serves as the editor of the IEEE Transactions on Sustainable Energy and IET-Generation, Transmission and Distribution (GTD) journal. Dr. Ali is a Senior Member of the IEEE Power and Energy Society (PES). He is also the Chair of the PES of the IEEE Memphis Section.