[PDF] Multiple Imputation For Nonresponse In Surveys - eBooks Review

Multiple Imputation For Nonresponse In Surveys


Multiple Imputation For Nonresponse In Surveys
DOWNLOAD

Download Multiple Imputation For Nonresponse In Surveys PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Multiple Imputation For Nonresponse In Surveys book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Multiple Imputation For Nonresponse In Surveys


Multiple Imputation For Nonresponse In Surveys
DOWNLOAD
Author : Donald B. Rubin
language : en
Publisher: John Wiley & Sons
Release Date : 2004-06-09

Multiple Imputation For Nonresponse In Surveys written by Donald B. Rubin and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2004-06-09 with Mathematics categories.


Demonstrates how nonresponse in sample surveys and censuses can be handled by replacing each missing value with two or more multiple imputations. Clearly illustrates the advantages of modern computing to such handle surveys, and demonstrates the benefit of this statistical technique for researchers who must analyze them. Also presents the background for Bayesian and frequentist theory. After establishing that only standard complete-data methods are needed to analyze a multiply-imputed set, the text evaluates procedures in general circumstances, outlining specific procedures for creating imputations in both the ignorable and nonignorable cases. Examples and exercises reinforce ideas, and the interplay of Bayesian and frequentist ideas presents a unified picture of modern statistics.



Multiple Imputation For Nonresponse In Surveys


Multiple Imputation For Nonresponse In Surveys
DOWNLOAD
Author : Donald B. Rubin
language : en
Publisher: John Wiley & Sons
Release Date : 2009-09-25

Multiple Imputation For Nonresponse In Surveys written by Donald B. Rubin and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-09-25 with Mathematics categories.


Demonstrates how nonresponse in sample surveys and censuses can be handled by replacing each missing value with two or more multiple imputations. Clearly illustrates the advantages of modern computing to such handle surveys, and demonstrates the benefit of this statistical technique for researchers who must analyze them. Also presents the background for Bayesian and frequentist theory. After establishing that only standard complete-data methods are needed to analyze a multiply-imputed set, the text evaluates procedures in general circumstances, outlining specific procedures for creating imputations in both the ignorable and nonignorable cases. Examples and exercises reinforce ideas, and the interplay of Bayesian and frequentist ideas presents a unified picture of modern statistics.



Estimation In Surveys With Nonresponse


Estimation In Surveys With Nonresponse
DOWNLOAD
Author : Carl-Erik Särndal
language : en
Publisher: John Wiley & Sons
Release Date : 2005-08-05

Estimation In Surveys With Nonresponse written by Carl-Erik Särndal and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2005-08-05 with Mathematics categories.


Around the world a multitude of surveys are conducted every day, on a variety of subjects, and consequently surveys have become an accepted part of modern life. However, in recent years survey estimates have been increasingly affected by rising trends in nonresponse, with loss of accuracy as an undesirable result. Whilst it is possible to reduce nonresponse to some degree, it cannot be completely eliminated. Estimation techniques that account systematically for nonresponse and at the same time succeed in delivering acceptable accuracy are much needed. Estimation in Surveys with Nonresponse provides an overview of these techniques, presenting the view of nonresponse as a normal (albeit undesirable) feature of a sample survey, one whose potentially harmful effects are to be minimised. Builds in the nonresponse feature of survey data collection as an integral part of the theory, both for point estimation and for variance estimation. Promotes weighting through calibration as a new and powerful technique for surveys with nonresponse. Highlights the analysis of nonresponse bias in estimates and methods to minimize this bias. Includes computational tools to help identify the best variables for calibration. Discusses the use of imputation as a complement to weighting by calibration. Contains guidelines for dealing with frame imperfections and coverage errors. Features worked examples throughout the text, using real data. The accessible style of Estimation in Surveys with Nonresponse will make this an invaluable tool for survey methodologists in national statistics agencies and private survey agencies. Researchers, teachers, and students of statistics, social sciences and economics will benefit from the clear presentation and numerous examples.



Multiple Imputation Of Missing Data In Practice


Multiple Imputation Of Missing Data In Practice
DOWNLOAD
Author : Yulei He
language : en
Publisher: CRC Press
Release Date : 2021-11-19

Multiple Imputation Of Missing Data In Practice written by Yulei He and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-11-19 with Mathematics categories.


Multiple Imputation of Missing Data in Practice: Basic Theory and Analysis Strategies provides a comprehensive introduction to the multiple imputation approach to missing data problems that are often encountered in data analysis. Over the past 40 years or so, multiple imputation has gone through rapid development in both theories and applications. It is nowadays the most versatile, popular, and effective missing-data strategy that is used by researchers and practitioners across different fields. There is a strong need to better understand and learn about multiple imputation in the research and practical community. Accessible to a broad audience, this book explains statistical concepts of missing data problems and the associated terminology. It focuses on how to address missing data problems using multiple imputation. It describes the basic theory behind multiple imputation and many commonly-used models and methods. These ideas are illustrated by examples from a wide variety of missing data problems. Real data from studies with different designs and features (e.g., cross-sectional data, longitudinal data, complex surveys, survival data, studies subject to measurement error, etc.) are used to demonstrate the methods. In order for readers not only to know how to use the methods, but understand why multiple imputation works and how to choose appropriate methods, simulation studies are used to assess the performance of the multiple imputation methods. Example datasets and sample programming code are either included in the book or available at a github site (https://github.com/he-zhang-hsu/multiple_imputation_book). Key Features Provides an overview of statistical concepts that are useful for better understanding missing data problems and multiple imputation analysis Provides a detailed discussion on multiple imputation models and methods targeted to different types of missing data problems (e.g., univariate and multivariate missing data problems, missing data in survival analysis, longitudinal data, complex surveys, etc.) Explores measurement error problems with multiple imputation Discusses analysis strategies for multiple imputation diagnostics Discusses data production issues when the goal of multiple imputation is to release datasets for public use, as done by organizations that process and manage large-scale surveys with nonresponse problems For some examples, illustrative datasets and sample programming code from popular statistical packages (e.g., SAS, R, WinBUGS) are included in the book. For others, they are available at a github site (https://github.com/he-zhang-hsu/multiple_imputation_book)



Multiple Imputation Of Missing Data Using Sas


Multiple Imputation Of Missing Data Using Sas
DOWNLOAD
Author : Patricia Berglund
language : en
Publisher: SAS Institute
Release Date : 2014-07-01

Multiple Imputation Of Missing Data Using Sas written by Patricia Berglund and has been published by SAS Institute this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-07-01 with Computers categories.


Find guidance on using SAS for multiple imputation and solving common missing data issues. Multiple Imputation of Missing Data Using SAS provides both theoretical background and constructive solutions for those working with incomplete data sets in an engaging example-driven format. It offers practical instruction on the use of SAS for multiple imputation and provides numerous examples that use a variety of public release data sets with applications to survey data. Written for users with an intermediate background in SAS programming and statistics, this book is an excellent resource for anyone seeking guidance on multiple imputation. The authors cover the MI and MIANALYZE procedures in detail, along with other procedures used for analysis of complete data sets. They guide analysts through the multiple imputation process, including evaluation of missing data patterns, choice of an imputation method, execution of the process, and interpretation of results. Topics discussed include how to deal with missing data problems in a statistically appropriate manner, how to intelligently select an imputation method, how to incorporate the uncertainty introduced by the imputation process, and how to incorporate the complex sample design (if appropriate) through use of the SAS SURVEY procedures. Discover the theoretical background and see extensive applications of the multiple imputation process in action. This book is part of the SAS Press program.



Multiple Imputation Of Missing Data Using Sas


Multiple Imputation Of Missing Data Using Sas
DOWNLOAD
Author : Patricia Berglund
language : en
Publisher: SAS Institute
Release Date : 2014-07

Multiple Imputation Of Missing Data Using Sas written by Patricia Berglund and has been published by SAS Institute this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-07 with Computers categories.


Written for users with an intermediate background in SAS programming and statistics, this book is an excellent resource for anyone seeking guidance on multiple imputation. It provides both theoretical background and practical solutions for those working with incomplete data sets in an engaging example-driven format.



Multiple Imputation In Practice


Multiple Imputation In Practice
DOWNLOAD
Author : Trivellore Raghunathan
language : en
Publisher: CRC Press
Release Date : 2018-07-20

Multiple Imputation In Practice written by Trivellore Raghunathan and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-07-20 with Mathematics categories.


Multiple Imputation in Practice: With Examples Using IVEware provides practical guidance on multiple imputation analysis, from simple to complex problems using real and simulated data sets. Data sets from cross-sectional, retrospective, prospective and longitudinal studies, randomized clinical trials, complex sample surveys are used to illustrate both simple, and complex analyses. Version 0.3 of IVEware, the software developed by the University of Michigan, is used to illustrate analyses. IVEware can multiply impute missing values, analyze multiply imputed data sets, incorporate complex sample design features, and be used for other statistical analyses framed as missing data problems. IVEware can be used under Windows, Linux, and Mac, and with software packages like SAS, SPSS, Stata, and R, or as a stand-alone tool. This book will be helpful to researchers looking for guidance on the use of multiple imputation to address missing data problems, along with examples of correct analysis techniques.



Encyclopedia Of Survey Research Methods


Encyclopedia Of Survey Research Methods
DOWNLOAD
Author : Paul J. Lavrakas
language : en
Publisher: SAGE Publications
Release Date : 2008-09-12

Encyclopedia Of Survey Research Methods written by Paul J. Lavrakas and has been published by SAGE Publications this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-09-12 with Social Science categories.


To the uninformed, surveys appear to be an easy type of research to design and conduct, but when students and professionals delve deeper, they encounter the vast complexities that the range and practice of survey methods present. To complicate matters, technology has rapidly affected the way surveys can be conducted; today, surveys are conducted via cell phone, the Internet, email, interactive voice response, and other technology-based modes. Thus, students, researchers, and professionals need both a comprehensive understanding of these complexities and a revised set of tools to meet the challenges. In conjunction with top survey researchers around the world and with Nielsen Media Research serving as the corporate sponsor, the Encyclopedia of Survey Research Methods presents state-of-the-art information and methodological examples from the field of survey research. Although there are other "how-to" guides and references texts on survey research, none is as comprehensive as this Encyclopedia, and none presents the material in such a focused and approachable manner. With more than 600 entries, this resource uses a Total Survey Error perspective that considers all aspects of possible survey error from a cost-benefit standpoint. Key Features Covers all major facets of survey research methodology, from selecting the sample design and the sampling frame, designing and pretesting the questionnaire, data collection, and data coding, to the thorny issues surrounding diminishing response rates, confidentiality, privacy, informed consent and other ethical issues, data weighting, and data analyses Presents a Reader′s Guide to organize entries around themes or specific topics and easily guide users to areas of interest Offers cross-referenced terms, a brief listing of Further Readings, and stable Web site URLs following most entries The Encyclopedia of Survey Research Methods is specifically written to appeal to beginning, intermediate, and advanced students, practitioners, researchers, consultants, and consumers of survey-based information.



Multiple Imputation And Its Application


Multiple Imputation And Its Application
DOWNLOAD
Author : James Carpenter
language : en
Publisher: John Wiley & Sons
Release Date : 2012-12-21

Multiple Imputation And Its Application written by James Carpenter and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-21 with Medical categories.


A practical guide to analysing partially observeddata. Collecting, analysing and drawing inferences from data iscentral to research in the medical and social sciences.Unfortunately, it is rarely possible to collect all the intendeddata. The literature on inference from the resultingincomplete data is now huge, and continues to grow both asmethods are developed for large and complex data structures, and asincreasing computer power and suitable software enable researchersto apply these methods. This book focuses on a particular statistical method foranalysing and drawing inferences from incomplete data, calledMultiple Imputation (MI). MI is attractive because it is bothpractical and widely applicable. The authors aim is to clarify theissues raised by missing data, describing the rationale for MI, therelationship between the various imputation models and associatedalgorithms and its application to increasingly complex datastructures. Multiple Imputation and its Application: Discusses the issues raised by the analysis of partiallyobserved data, and the assumptions on which analyses rest. Presents a practical guide to the issues to consider whenanalysing incomplete data from both observational studies andrandomized trials. Provides a detailed discussion of the practical use of MI withreal-world examples drawn from medical and social statistics. Explores handling non-linear relationships and interactionswith multiple imputation, survival analysis, multilevel multipleimputation, sensitivity analysis via multiple imputation, usingnon-response weights with multiple imputation and doubly robustmultiple imputation. Multiple Imputation and its Application is aimed atquantitative researchers and students in the medical and socialsciences with the aim of clarifying the issues raised by theanalysis of incomplete data data, outlining the rationale for MIand describing how to consider and address the issues that arise inits application.



Analysis Of Incomplete Multivariate Data


Analysis Of Incomplete Multivariate Data
DOWNLOAD
Author : J.L. Schafer
language : en
Publisher: CRC Press
Release Date : 1997-08-01

Analysis Of Incomplete Multivariate Data written by J.L. Schafer and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 1997-08-01 with Mathematics categories.


The last two decades have seen enormous developments in statistical methods for incomplete data. The EM algorithm and its extensions, multiple imputation, and Markov Chain Monte Carlo provide a set of flexible and reliable tools from inference in large classes of missing-data problems. Yet, in practical terms, those developments have had surprisingly little impact on the way most data analysts handle missing values on a routine basis. Analysis of Incomplete Multivariate Data helps bridge the gap between theory and practice, making these missing-data tools accessible to a broad audience. It presents a unified, Bayesian approach to the analysis of incomplete multivariate data, covering datasets in which the variables are continuous, categorical, or both. The focus is applied, where necessary, to help readers thoroughly understand the statistical properties of those methods, and the behavior of the accompanying algorithms. All techniques are illustrated with real data examples, with extended discussion and practical advice. All of the algorithms described in this book have been implemented by the author for general use in the statistical languages S and S Plus. The software is available free of charge on the Internet.