[PDF] Multiple Regression And Beyond - eBooks Review

Multiple Regression And Beyond


Multiple Regression And Beyond
DOWNLOAD

Download Multiple Regression And Beyond PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Multiple Regression And Beyond book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Multiple Regression And Beyond


Multiple Regression And Beyond
DOWNLOAD
Author : Timothy Z. Keith
language : en
Publisher: Routledge
Release Date : 2019-01-14

Multiple Regression And Beyond written by Timothy Z. Keith and has been published by Routledge this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-01-14 with Education categories.


Companion Website materials: https://tzkeith.com/ Multiple Regression and Beyond offers a conceptually-oriented introduction to multiple regression (MR) analysis and structural equation modeling (SEM), along with analyses that flow naturally from those methods. By focusing on the concepts and purposes of MR and related methods, rather than the derivation and calculation of formulae, this book introduces material to students more clearly, and in a less threatening way. In addition to illuminating content necessary for coursework, the accessibility of this approach means students are more likely to be able to conduct research using MR or SEM--and more likely to use the methods wisely. This book: • Covers both MR and SEM, while explaining their relevance to one another • Includes path analysis, confirmatory factor analysis, and latent growth modeling • Makes extensive use of real-world research examples in the chapters and in the end-of-chapter exercises • Extensive use of figures and tables providing examples and illustrating key concepts and techniques New to this edition: • New chapter on mediation, moderation, and common cause • New chapter on the analysis of interactions with latent variables and multilevel SEM • Expanded coverage of advanced SEM techniques in chapters 18 through 22 • International case studies and examples • Updated instructor and student online resources



Beyond Multiple Linear Regression


Beyond Multiple Linear Regression
DOWNLOAD
Author : Paul Roback
language : en
Publisher: CRC Press
Release Date : 2021-01-14

Beyond Multiple Linear Regression written by Paul Roback and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-01-14 with Mathematics categories.


Beyond Multiple Linear Regression: Applied Generalized Linear Models and Multilevel Models in R is designed for undergraduate students who have successfully completed a multiple linear regression course, helping them develop an expanded modeling toolkit that includes non-normal responses and correlated structure. Even though there is no mathematical prerequisite, the authors still introduce fairly sophisticated topics such as likelihood theory, zero-inflated Poisson, and parametric bootstrapping in an intuitive and applied manner. The case studies and exercises feature real data and real research questions; thus, most of the data in the textbook comes from collaborative research conducted by the authors and their students, or from student projects. Every chapter features a variety of conceptual exercises, guided exercises, and open-ended exercises using real data. After working through this material, students will develop an expanded toolkit and a greater appreciation for the wider world of data and statistical modeling. A solutions manual for all exercises is available to qualified instructors at the book’s website at www.routledge.com, and data sets and Rmd files for all case studies and exercises are available at the authors’ GitHub repo (https://github.com/proback/BeyondMLR)



Multiple Regression With Discrete Dependent Variables


Multiple Regression With Discrete Dependent Variables
DOWNLOAD
Author : John G. Orme
language : en
Publisher: Oxford University Press
Release Date : 2009-03-25

Multiple Regression With Discrete Dependent Variables written by John G. Orme and has been published by Oxford University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-03-25 with Social Science categories.


Most social work researchers are familiar with linear regression techniques, which are fairly straightforward to conduct, interpret, and present. However, linear regression is not appropriate for discrete dependent variables, and social work research frequently employs these variables, focusing on outcomes such as placement in foster care or not; level of severity of elder abuse or depression symptoms; or number of reoffenses by juvenile delinquents in the year following adjudication. This book presents detailed discussions of regression models that are appropriate for a variety of discrete dependent variables. The major challenges of such analyses lie in the non-linear relationships between independent and dependent variables, and particularly in interpreting and presenting findings. Clear language guides the reader briefly through each step of the analysis, using SPSS and result presentation to enhance understanding of the important link function. The book begins with a brief review of linear regression; next, the authors cover basic binary logistic regression, which provides a foundation for the other techniques. In particular, comprehension of the link function is vital in order to later interpret these methods' results. Though the book assumes a basic understanding of linear regression, reviews and definitions throughout provide useful reminders of important terms and their meaning, and throughout the book the authors provide detailed examples based on their own data, which readers may work through by accessing the data and output on companion website. Social work and other social sciences faculty, students, and researchers who already have a basic understanding of linear regression but are not as familiar with the regression analysis of discrete dependent variables will find this straightforward pocket guide to be a terrific boon to their bookshelves. For additional resources, visit http://www.oup.com/us/pocketguides.



Multiple Regression In Practice


Multiple Regression In Practice
DOWNLOAD
Author : William D. Berry
language : en
Publisher: SAGE
Release Date : 1985-05

Multiple Regression In Practice written by William D. Berry and has been published by SAGE this book supported file pdf, txt, epub, kindle and other format this book has been release on 1985-05 with Mathematics categories.


The authors provide a systematic treatment of the major problems involved in using regression analysis. They clearly and concisely discuss the consequences of violating the assumptions of the regression model, procedures for detecting violations, and strategies for dealing with these problems.



Applied Regression Analysis


Applied Regression Analysis
DOWNLOAD
Author : Christer Thrane
language : en
Publisher: Routledge
Release Date : 2019-10-16

Applied Regression Analysis written by Christer Thrane and has been published by Routledge this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-10-16 with Business & Economics categories.


This book is an introduction to regression analysis, focusing on the practicalities of doing regression analysis on real-life data. Contrary to other textbooks on regression, this book is based on the idea that you do not necessarily need to know much about statistics and mathematics to get a firm grip on regression and perform it to perfection. This non-technical point of departure is complemented by practical examples of real-life data analysis using statistics software such as Stata, R and SPSS. Parts 1 and 2 of the book cover the basics, such as simple linear regression, multiple linear regression, how to interpret the output from statistics programs, significance testing and the key regression assumptions. Part 3 deals with how to practically handle violations of the classical linear regression assumptions, regression modeling for categorical y-variables and instrumental variable (IV) regression. Part 4 puts the various purposes of, or motivations for, regression into the wider context of writing a scholarly report and points to some extensions to related statistical techniques. This book is written primarily for those who need to do regression analysis in practice, and not only to understand how this method works in theory. The book’s accessible approach is recommended for students from across the social sciences.



Regression Linear Modeling


Regression Linear Modeling
DOWNLOAD
Author : Jason W. Osborne
language : en
Publisher:
Release Date : 2017

Regression Linear Modeling written by Jason W. Osborne and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017 with Linear models (Statistics) categories.


In a conversational tone, Regression & Linear Modeling provides conceptual, user-friendly coverage of the generalized linear model (GLM). Readers will become familiar with applications of ordinary least squares (OLS) regression, binary and multinomial logistic regression, ordinal regression, Poisson regression, and loglinear models. The author returns to certain themes throughout the text, such as testing assumptions, examining data quality, and, where appropriate, nonlinear and non-additive effects modeled within different types of linear models.



Understanding Regression Analysis


Understanding Regression Analysis
DOWNLOAD
Author : Larry D. Schroeder
language : en
Publisher: SAGE Publications
Release Date : 2016-11-08

Understanding Regression Analysis written by Larry D. Schroeder and has been published by SAGE Publications this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-11-08 with Social Science categories.


Understanding Regression Analysis: An Introductory Guide by Larry D. Schroeder, David L. Sjoquist, and Paula E. Stephan presents the fundamentals of regression analysis, from its meaning to uses, in a concise, easy-to-read, and non-technical style. It illustrates how regression coefficients are estimated, interpreted, and used in a variety of settings within the social sciences, business, law, and public policy. Packed with applied examples and using few equations, the book walks readers through elementary material using a verbal, intuitive interpretation of regression coefficients, associated statistics, and hypothesis tests. The Second Edition features updated examples and new references to modern software output.



Advanced Regression Models With Sas And R


Advanced Regression Models With Sas And R
DOWNLOAD
Author : Olga Korosteleva
language : en
Publisher: CRC Press
Release Date : 2018-12-07

Advanced Regression Models With Sas And R written by Olga Korosteleva and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-12-07 with Mathematics categories.


Advanced Regression Models with SAS and R exposes the reader to the modern world of regression analysis. The material covered by this book consists of regression models that go beyond linear regression, including models for right-skewed, categorical and hierarchical observations. The book presents the theory as well as fully worked-out numerical examples with complete SAS and R codes for each regression. The emphasis is on model accuracy and the interpretation of results. For each regression, the fitted model is presented along with interpretation of estimated regression coefficients and prediction of response for given values of predictors. Features: Presents the theoretical framework for each regression. Discusses data that are categorical, count, proportions, right-skewed, longitudinal and hierarchical. Uses examples based on real-life consulting projects. Provides complete SAS and R codes for each example. Includes several exercises for every regression. Advanced Regression Models with SAS and R is designed as a text for an upper division undergraduate or a graduate course in regression analysis. Prior exposure to the two software packages is desired but not required. The Author: Olga Korosteleva is a Professor of Statistics at California State University, Long Beach. She teaches a large variety of statistical courses to undergraduate and master’s students. She has published three statistical textbooks. For a number of years, she has held the position of faculty director of the statistical consulting group. Her research interests lie mostly in applications of statistical methodology through collaboration with her clients in health sciences, nursing, kinesiology, and other fields.



Lisrel Approaches To Interaction Effects In Multiple Regression


Lisrel Approaches To Interaction Effects In Multiple Regression
DOWNLOAD
Author : James Jaccard
language : en
Publisher: SAGE
Release Date : 1996-03-21

Lisrel Approaches To Interaction Effects In Multiple Regression written by James Jaccard and has been published by SAGE this book supported file pdf, txt, epub, kindle and other format this book has been release on 1996-03-21 with Mathematics categories.


With detailed examples, this book demonstrates the use of the computer program LISREL and how it can be applied to the analysis of interactions in regression frameworks. The authors consider a wide range of applications including: qualitative moderator variables; longitudinal designs; and product term analysis. They describe different types of measurement error and then present a discussion of latent variable representations of measurement error which serves as the foundation for the analyses described in later chapters. Finally they offer a brief introduction to LISREL and show how it can be used to execute the analyses. Readers can use this book without any prior training in LISREL and will find it an excellent introduction to analytic methods that deal with the problem of measurement error in the analysis of interactions.



Generalized Linear Models With Examples In R


Generalized Linear Models With Examples In R
DOWNLOAD
Author : Peter K. Dunn
language : en
Publisher: Springer
Release Date : 2018-11-10

Generalized Linear Models With Examples In R written by Peter K. Dunn and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-11-10 with Mathematics categories.


This textbook presents an introduction to generalized linear models, complete with real-world data sets and practice problems, making it applicable for both beginning and advanced students of applied statistics. Generalized linear models (GLMs) are powerful tools in applied statistics that extend the ideas of multiple linear regression and analysis of variance to include response variables that are not normally distributed. As such, GLMs can model a wide variety of data types including counts, proportions, and binary outcomes or positive quantities. The book is designed with the student in mind, making it suitable for self-study or a structured course. Beginning with an introduction to linear regression, the book also devotes time to advanced topics not typically included in introductory textbooks. It features chapter introductions and summaries, clear examples, and many practice problems, all carefully designed to balance theory and practice. The text also provides a working knowledge of applied statistical practice through the extensive use of R, which is integrated into the text. Other features include: • Advanced topics such as power variance functions, saddlepoint approximations, likelihood score tests, modified profile likelihood, small-dispersion asymptotics, and randomized quantile residuals • Nearly 100 data sets in the companion R package GLMsData • Examples that are cross-referenced to the companion data set, allowing readers to load the data and follow the analysis in their own R session