Multiple Valued Computing In Quantum Molecular Biology


Multiple Valued Computing In Quantum Molecular Biology
DOWNLOAD
READ ONLINE

Download Multiple Valued Computing In Quantum Molecular Biology PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Multiple Valued Computing In Quantum Molecular Biology book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page





Multiple Valued Computing In Quantum Molecular Biology


Multiple Valued Computing In Quantum Molecular Biology
DOWNLOAD
READ ONLINE

Author : Hafiz Md. Hasan Babu
language : en
Publisher: CRC Press
Release Date : 2023-10-03

Multiple Valued Computing In Quantum Molecular Biology written by Hafiz Md. Hasan Babu and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-10-03 with Computers categories.


This book focuses on the design methodologies of various quantum circuits, DNA circuits, DNA-quantum circuits and quantum-DNA circuits. It considers the merits and challenges of multivalued logic circuits in quantum, DNA, quantum-DNA and DNA-quantum computing. Multiple-Valued Computing in Quantum Molecular Biology: Arithmetic and Combinational Circuits is Volume 1 of a two-volume set. From fundamentals to advanced levels, this book discusses different multiple-valued logic DNA-quantum and quantum-DNA circuits. The text consists of four parts. Part I introduces multiple-valued quantum computing and DNA computing. It contains the basic understanding of multiple-valued quantum computing, multiple-valued DNA computing, multiple-valued quantum-DNA computing and multiple-valued DNA-quantum computing. Part II examines heat calculation, speed calculation, heat transfer, data conversion and data management in multi-valued quantum, DNA, quantum-DNA and DNA-quantum computing. Part III discusses multiple-valued logic operations in quantum and DNA computing such as ternary AND, NAND, OR, NOR, XOR, XNOR and multiple-valued arithmetic operations such as adder, multiplier, divider and more. Quantum-DNA and DNA-quantum multiple-valued arithmetic operations are also explained in this section. Part IV explains multiple-valued quantum and DNA combinational circuits such as multiple-valued DNA-quantum and quantum-DNA multiplexer, demultiplexer, encoder and decoder. This book will be of great help to researchers and students in quantum computing, DNA computing, quantum-DNA computing and DNA-quantum computing researchers.



Multiple Valued Computing In Quantum Molecular Biology


Multiple Valued Computing In Quantum Molecular Biology
DOWNLOAD
READ ONLINE

Author : Hafiz Md. Hasan Babu
language : en
Publisher: CRC Press
Release Date : 2023-10-03

Multiple Valued Computing In Quantum Molecular Biology written by Hafiz Md. Hasan Babu and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-10-03 with Computers categories.


This book mainly focuses on the design methodologies of various quantum circuits, DNA circuits, DNA-quantum circuits, and quantum-DNA circuits. In this text, the author has compiled various design aspects of multiple-valued logic DNA-quantum and quantum-DNA sequential circuits, memory devices, programmable logic devices, and nanoprocessors. Multiple-Valued Computing in Quantum Molecular Biology: Sequential Circuits, Memory Devices, Programmable Logic Devices, and Nanoprocessors is Volume 2 of a two-volume set, and consists of four parts. This book presents various design aspects of multiple-valued logic DNA-quantum and quantum-DNA sequential circuits, memory devices, programmable logic devices, and nanoprocessors. Part I discusses multiple-valued quantum and DNA sequential circuits such as D flip-flop, SR latch, SR flip-flop, JK flip-flop, T flip-flop, shift register, ripple counter, and synchronous counter, which are described, respectively, with the applications and working procedures. After that, multiple-valued quantum-DNA and DNA-quantum sequential circuits such as D flip-flop, SR flip-flop, JK flip-flop, T flip-flop, shift register, ripple counter and synchronous counter circuits are explained with working procedures and architecture. Part II discusses the architecture and design procedure of memory devices such as random access memory (RAM), read-only memory (ROM), programmable read-only memory (PROM), and cache memory, which are sequentially described in multiple-valued quantum, DNA, quantum-DNA, and DNA-quantum computing. In Part III, the author examines the architectures and working principles of programmable logic devices such as programmable logic array (PLA), programmable array logic (PAL), field programmable gate array (FPGA), and complex programmable logic device (CPLD) in multiple-valued quantum, DNA, quantum-DNA, and DNA-quantum computing. Multiple-valued quantum, DNA, quantum-DNA, and DNA-quantum nanoprocessors are designed with algorithms in Part IV. Furthermore, the basic components of ternary nanoprocessors such as T-RAM, ternary instruction register, ternary incrementor circuit, ternary decoder, ternary multiplexer, ternary accumulator in quantum, DNA, quantum-DNA, and DNA-quantum computing are also explained in detail. This book will be of great help to researchers and students in quantum computing, DNA computing, quantum-DNA computing, and DNA-quantum computing.



Multiple Valued Computing In Quantum Molecular Biology


Multiple Valued Computing In Quantum Molecular Biology
DOWNLOAD
READ ONLINE

Author : Hafiz Md. Hasan Babu
language : en
Publisher: CRC Press
Release Date : 2023-10-03

Multiple Valued Computing In Quantum Molecular Biology written by Hafiz Md. Hasan Babu and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-10-03 with Computers categories.


This book mainly focuses on the design methodologies of various quantum circuits, DNA circuits, DNA-quantum circuits, and quantum-DNA circuits. In this text, the author has compiled various design aspects of multiple-valued logic DNA-quantum and quantum-DNA sequential circuits, memory devices, programmable logic devices, and nanoprocessors. Multiple-Valued Computing in Quantum Molecular Biology: Sequential Circuits, Memory Devices, Programmable Logic Devices, and Nanoprocessors is Volume 2 of a two-volume set, and consists of four parts. This book presents various design aspects of multiple-valued logic DNA-quantum and quantum-DNA sequential circuits, memory devices, programmable logic devices, and nanoprocessors. Part I discusses multiple-valued quantum and DNA sequential circuits such as D flip-flop, SR latch, SR flip-flop, JK flip-flop, T flip-flop, shift register, ripple counter, and synchronous counter, which are described, respectively, with the applications and working procedures. After that, multiple-valued quantum-DNA and DNA-quantum sequential circuits such as D flip-flop, SR flip-flop, JK flip-flop, T flip-flop, shift register, ripple counter and synchronous counter circuits are explained with working procedures and architecture. Part II discusses the architecture and design procedure of memory devices such as random access memory (RAM), read-only memory (ROM), programmable read-only memory (PROM), and cache memory, which are sequentially described in multiple-valued quantum, DNA, quantum-DNA, and DNA-quantum computing. In Part III, the author examines the architectures and working principles of programmable logic devices such as programmable logic array (PLA), programmable array logic (PAL), field programmable gate array (FPGA), and complex programmable logic device (CPLD) in multiple-valued quantum, DNA, quantum-DNA, and DNA-quantum computing. Multiple-valued quantum, DNA, quantum-DNA, and DNA-quantum nanoprocessors are designed with algorithms in Part IV. Furthermore, the basic components of ternary nanoprocessors such as T-RAM, ternary instruction register, ternary incrementor circuit, ternary decoder, ternary multiplexer, ternary accumulator in quantum, DNA, quantum-DNA, and DNA-quantum computing are also explained in detail. This book will be of great help to researchers and students in quantum computing, DNA computing, quantum-DNA computing, and DNA-quantum computing.



The Amazing World Of Quantum Computing


The Amazing World Of Quantum Computing
DOWNLOAD
READ ONLINE

Author : Rajendra K. Bera
language : en
Publisher: Springer Nature
Release Date : 2020-03-14

The Amazing World Of Quantum Computing written by Rajendra K. Bera and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-03-14 with Science categories.


This book discusses the application of quantum mechanics to computing. It explains the fundamental concepts of quantum mechanics and then goes on to discuss various elements of mathematics required for quantum computing. Quantum cryptography, waves and Fourier analysis, measuring quantum systems, comparison to classical mechanics, quantum gates, and important algorithms in quantum computing are among the topics covered. The book offers a valuable resource for graduate and senior undergraduate students in STEM (science, technology, engineering, and mathematics) fields with an interest in designing quantum algorithms. Readers are expected to have a firm grasp of linear algebra and some familiarity with Fourier analysis.



Quantum Adaptivity In Biology From Genetics To Cognition


Quantum Adaptivity In Biology From Genetics To Cognition
DOWNLOAD
READ ONLINE

Author : Masanari Asano
language : en
Publisher: Springer
Release Date : 2015-04-14

Quantum Adaptivity In Biology From Genetics To Cognition written by Masanari Asano and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-04-14 with Science categories.


This book examines information processing performed by bio-systems at all scales: from genomes, cells and proteins to cognitive and even social systems. It introduces a theoretical/conceptual principle based on quantum information and non-Kolmogorov probability theory to explain information processing phenomena in biology as a whole. The book begins with an introduction followed by two chapters devoted to fundamentals, one covering classical and quantum probability, which also contains a brief introduction to quantum formalism, and another on an information approach to molecular biology, genetics and epigenetics. It then goes on to examine adaptive dynamics, including applications to biology, and non-Kolmogorov probability theory. Next, the book discusses the possibility to apply the quantum formalism to model biological evolution, especially at the cellular level: genetic and epigenetic evolutions. It also presents a model of the epigenetic cellular evolution based on the mathematical formalism of open quantum systems. The last two chapters of the book explore foundational problems of quantum mechanics and demonstrate the power of usage of positive operator valued measures (POVMs) in biological science. This book will appeal to a diverse group of readers including experts in biology, cognitive science, decision making, sociology, psychology, and physics; mathematicians working on problems of quantum probability and information and researchers in quantum foundations.



Computational Methods To Study The Structure And Dynamics Of Biomolecules And Biomolecular Processes


Computational Methods To Study The Structure And Dynamics Of Biomolecules And Biomolecular Processes
DOWNLOAD
READ ONLINE

Author : Adam Liwo
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-07-17

Computational Methods To Study The Structure And Dynamics Of Biomolecules And Biomolecular Processes written by Adam Liwo and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-07-17 with Technology & Engineering categories.


Since the second half of the 20th century machine computations have played a critical role in science and engineering. Computer-based techniques have become especially important in molecular biology, since they often represent the only viable way to gain insights into the behavior of a biological system as a whole. The complexity of biological systems, which usually needs to be analyzed on different time- and size-scales and with different levels of accuracy, requires the application of different approaches, ranging from comparative analysis of sequences and structural databases, to the analysis of networks of interdependence between cell components and processes, through coarse-grained modeling to atomically detailed simulations, and finally to molecular quantum mechanics. This book provides a comprehensive overview of modern computer-based techniques for computing the structure, properties and dynamics of biomolecules and biomolecular processes. The twenty-two chapters, written by scientists from all over the world, address the theory and practice of computer simulation techniques in the study of biological phenomena. The chapters are grouped into four thematic sections dealing with the following topics: the methodology of molecular simulations; applications of molecular simulations; bioinformatics methods and use of experimental information in molecular simulations; and selected applications of molecular quantum mechanics. The book includes an introductory chapter written by Harold A. Scheraga, one of the true pioneers in simulation studies of biomacromolecules.



Quantum Walks For Computer Scientists


Quantum Walks For Computer Scientists
DOWNLOAD
READ ONLINE

Author : Salvador Venegas-Andraca
language : en
Publisher: Springer Nature
Release Date : 2022-05-31

Quantum Walks For Computer Scientists written by Salvador Venegas-Andraca and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-05-31 with Mathematics categories.


Quantum computation, one of the latest joint ventures between physics and the theory of computation, is a scientific field whose main goals include the development of hardware and algorithms based on the quantum mechanical properties of those physical systems used to implement such algorithms. Solving difficult tasks (for example, the Satisfiability Problem and other NP-complete problems) requires the development of sophisticated algorithms, many ofwhich employ stochastic processes as their mathematical basis. Discrete random walks are a popular choice among those stochastic processes. Inspired on the success of discrete random walks in algorithm development, quantum walks, an emerging field of quantum computation, is a generalization of random walks into the quantum mechanical world. The purpose of this lecture is to provide a concise yet comprehensive introduction to quantum walks. Table of Contents: Introduction / Quantum Mechanics / Theory of Computation / Classical Random Walks / Quantum Walks / Computer Science and Quantum Walks / Conclusions



Computer Simulations In Molecular Biology


Computer Simulations In Molecular Biology
DOWNLOAD
READ ONLINE

Author : Hiqmet Kamberaj
language : en
Publisher:
Release Date : 2023

Computer Simulations In Molecular Biology written by Hiqmet Kamberaj and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023 with categories.


This book covers a range of topics in quantum mechanics and molecular dynamics simulation, including computational modeling and machine learning approaches. The book also provides a Python GUI and tutorials for simulating molecular biological systems and presents case studies of quantum mechanics simulations for predicting electronic properties. Its pedagogical formatting makes it easy for students to understand and follow and has been praised for providing clear and detailed explanations of complex topics. This book is ideal for graduate students and researchers in theoretical and computational biophysics, physics, chemistry, and materials science, as well as postgraduates in applied mathematics, computer science, and bioinformatics.



Molecular Logic Based Computation


Molecular Logic Based Computation
DOWNLOAD
READ ONLINE

Author : A Prasanna de Silva
language : en
Publisher: Royal Society of Chemistry
Release Date : 2016-01-13

Molecular Logic Based Computation written by A Prasanna de Silva and has been published by Royal Society of Chemistry this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-01-13 with Science categories.


We all learn - in schools, factories, bars and streets. We gather, store, process and transmit information in society. Molecular systems involved in our senses and within our brains allow all this to happen and molecular systems allow living things of all kinds to handle information for the purpose of survival and growth. Nevertheless, the vital link between molecules and computation was not generally appreciated until a few decades ago. Semiconductor-based information technology had penetrated society at many levels and the interest in maintaining momentum of this revolution led to the consideration of molecules, among others, as possible information handlers. Such an overlap between the recent engineering-oriented revolution with the ancient biology-oriented success story is very interesting and George Boole's times in Ireland 150 years ago produced the logic ideas that provide the foundations of computation to this day. Molecular logic and computation is a field which is 17 years young, has had a healthy growth and is a story which deserves to be told. It is a growing branch of chemical science which highlights the connection between information technology (engineering and biological) and chemistry. The author and co-workers of this publication launched molecular logic as an experimental field by publishing the first research in the primary literature in 1993 and are uniquely placed to recount how the field has grown. There is no other book at present on molecular logic and computation and is more comprehensive than that found in any review available so far. It shows how designed molecules can play the role of information processors in a wide variety of situations, once we are educated by those information processors already available in the semiconductor electronics business and in the natural world. Following a short history of the field, is a set of primers on logic, computing and photochemical principles which are an essential basis in this field. The book covers all of the Boolean logic gates driven by a single input and all of those with double inputs and the wide range of designs which lie beneath these gates is a particular highlight. The easily-available diversity of chemical systems is another highlight, especially when it leads to reconfigurable logic gates. Further on in the book, molecular arithmetic and other more complex logic operations, including those with a memory and those which stray beyond binary are covered. Then follows molecular computing approaches which lie outside the Boolean blueprint, including quantum phenomena and finally, the book catalogues the useful real-life applications of molecular logic and computation which are already available. This book is an authoritative, state of the art, reference and a 'one-stop-shop' concerning the current state of the field for scientists, academics and postgraduate students.



Ultimate Computing


Ultimate Computing
DOWNLOAD
READ ONLINE

Author : S.R. Hameroff
language : en
Publisher: Elsevier
Release Date : 2014-04-11

Ultimate Computing written by S.R. Hameroff and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-04-11 with Computers categories.


The possibility of direct interfacing between biological and technological information devices could result in a merger of mind and machine - Ultimate Computing. This book, a thorough consideration of this idea, involves a number of disciplines, including biochemistry, cognitive science, computer science, engineering, mathematics, microbiology, molecular biology, pharmacology, philosophy, physics, physiology, and psychology.