Multivariable Calculus With Engineering And Science Applications

DOWNLOAD
Download Multivariable Calculus With Engineering And Science Applications PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Multivariable Calculus With Engineering And Science Applications book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Multivariable Calculus With Engineering And Science Applications
DOWNLOAD
Author : Philip M. Anselone
language : en
Publisher:
Release Date : 1996
Multivariable Calculus With Engineering And Science Applications written by Philip M. Anselone and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 1996 with Mathematics categories.
Aimed at students seeking a career in science, engineering or mathematics, this text on multivariable calculus emphasizes that calculus is best understood via geometry and interdisciplinary applications. The book includes problem sets and chapter projects that offer a substantial source of applied problems. Also included are chapter-end do-it-yourself projects on topics in science, engineering and probability. Short examples of MATLAB code are featured occasionally.
Two And Three Dimensional Calculus
DOWNLOAD
Author : Phil Dyke
language : en
Publisher: John Wiley & Sons
Release Date : 2018-07-23
Two And Three Dimensional Calculus written by Phil Dyke and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-07-23 with Mathematics categories.
Covers multivariable calculus, starting from the basics and leading up to the three theorems of Green, Gauss, and Stokes, but always with an eye on practical applications. Written for a wide spectrum of undergraduate students by an experienced author, this book provides a very practical approach to advanced calculus—starting from the basics and leading up to the theorems of Green, Gauss, and Stokes. It explains, clearly and concisely, partial differentiation, multiple integration, vectors and vector calculus, and provides end-of-chapter exercises along with their solutions to aid the readers’ understanding. Written in an approachable style and filled with numerous illustrative examples throughout, Two and Three Dimensional Calculus: with Applications in Science and Engineering assumes no prior knowledge of partial differentiation or vectors and explains difficult concepts with easy to follow examples. Rather than concentrating on mathematical structures, the book describes the development of techniques through their use in science and engineering so that students acquire skills that enable them to be used in a wide variety of practical situations. It also has enough rigor to enable those who wish to investigate the more mathematical generalizations found in most mathematics degrees to do so. Assumes no prior knowledge of partial differentiation, multiple integration or vectors Includes easy-to-follow examples throughout to help explain difficult concepts Features end-of-chapter exercises with solutions to exercises in the book. Two and Three Dimensional Calculus: with Applications in Science and Engineering is an ideal textbook for undergraduate students of engineering and applied sciences as well as those needing to use these methods for real problems in industry and commerce.
Multivariable Calculus With Matlab
DOWNLOAD
Author : Ronald L. Lipsman
language : en
Publisher: Springer
Release Date : 2017-12-18
Multivariable Calculus With Matlab written by Ronald L. Lipsman and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-12-18 with Mathematics categories.
This comprehensive treatment of multivariable calculus focuses on the numerous tools that MATLAB® brings to the subject, as it presents introductions to geometry, mathematical physics, and kinematics. Covering simple calculations with MATLAB®, relevant plots, integration, and optimization, the numerous problem sets encourage practice with newly learned skills that cultivate the reader’s understanding of the material. Significant examples illustrate each topic, and fundamental physical applications such as Kepler’s Law, electromagnetism, fluid flow, and energy estimation are brought to prominent position. Perfect for use as a supplement to any standard multivariable calculus text, a “mathematical methods in physics or engineering” class, for independent study, or even as the class text in an “honors” multivariable calculus course, this textbook will appeal to mathematics, engineering, and physical science students. MATLAB® is tightly integrated into every portion of this book, and its graphical capabilities are used to present vibrant pictures of curves and surfaces. Readers benefit from the deep connections made between mathematics and science while learning more about the intrinsic geometry of curves and surfaces. With serious yet elementary explanation of various numerical algorithms, this textbook enlivens the teaching of multivariable calculus and mathematical methods courses for scientists and engineers.
Multivariable Calculus With Applications
DOWNLOAD
Author : Peter D. Lax
language : en
Publisher: Springer
Release Date : 2018-03-12
Multivariable Calculus With Applications written by Peter D. Lax and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-03-12 with Mathematics categories.
This text in multivariable calculus fosters comprehension through meaningful explanations. Written with students in mathematics, the physical sciences, and engineering in mind, it extends concepts from single variable calculus such as derivative, integral, and important theorems to partial derivatives, multiple integrals, Stokes’ and divergence theorems. Students with a background in single variable calculus are guided through a variety of problem solving techniques and practice problems. Examples from the physical sciences are utilized to highlight the essential relationship between calculus and modern science. The symbiotic relationship between science and mathematics is shown by deriving and discussing several conservation laws, and vector calculus is utilized to describe a number of physical theories via partial differential equations. Students will learn that mathematics is the language that enables scientific ideas to be precisely formulated and that science is a source for the development of mathematics.
Multivariable Calculus With Engineering And Science Applications Preliminary Version
DOWNLOAD
Author : Philip M. Anselone
language : en
Publisher:
Release Date : 1996
Multivariable Calculus With Engineering And Science Applications Preliminary Version written by Philip M. Anselone and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 1996 with categories.
Calculus For Engineering Students
DOWNLOAD
Author : Jesus Martin Vaquero
language : en
Publisher: Academic Press
Release Date : 2020-08-10
Calculus For Engineering Students written by Jesus Martin Vaquero and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-08-10 with Mathematics categories.
Calculus for Engineering Students: Fundamentals, Real Problems, and Computers insists that mathematics cannot be separated from chemistry, mechanics, electricity, electronics, automation, and other disciplines. It emphasizes interdisciplinary problems as a way to show the importance of calculus in engineering tasks and problems. While concentrating on actual problems instead of theory, the book uses Computer Algebra Systems (CAS) to help students incorporate lessons into their own studies. Assuming a working familiarity with calculus concepts, the book provides a hands-on opportunity for students to increase their calculus and mathematics skills while also learning about engineering applications. - Organized around project-based rather than traditional homework-based learning - Reviews basic mathematics and theory while also introducing applications - Employs uniform chapter sections that encourage the comparison and contrast of different areas of engineering
Calculus For Scientists And Engineers
DOWNLOAD
Author : Martin Brokate
language : en
Publisher: Springer
Release Date : 2019-08-03
Calculus For Scientists And Engineers written by Martin Brokate and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-08-03 with Mathematics categories.
This book presents the basic concepts of calculus and its relevance to real-world problems, covering the standard topics in their conventional order. By focusing on applications, it allows readers to view mathematics in a practical and relevant setting. Organized into 12 chapters, this book includes numerous interesting, relevant and up-to date applications that are drawn from the fields of business, economics, social and behavioural sciences, life sciences, physical sciences, and other fields of general interest. It also features MATLAB, which is used to solve a number of problems. The book is ideal as a first course in calculus for mathematics and engineering students. It is also useful for students of other sciences who are interested in learning calculus.
Probability With Applications In Engineering Science And Technology
DOWNLOAD
Author : Matthew A. Carlton
language : en
Publisher: Springer
Release Date : 2017-03-30
Probability With Applications In Engineering Science And Technology written by Matthew A. Carlton and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-03-30 with Mathematics categories.
This updated and revised first-course textbook in applied probability provides a contemporary and lively post-calculus introduction to the subject of probability. The exposition reflects a desirable balance between fundamental theory and many applications involving a broad range of real problem scenarios. It is intended to appeal to a wide audience, including mathematics and statistics majors, prospective engineers and scientists, and those business and social science majors interested in the quantitative aspects of their disciplines. The textbook contains enough material for a year-long course, though many instructors will use it for a single term (one semester or one quarter). As such, three course syllabi with expanded course outlines are now available for download on the book’s page on the Springer website. A one-term course would cover material in the core chapters (1-4), supplemented by selections from one or more of the remaining chapters on statistical inference (Ch. 5), Markov chains (Ch. 6), stochastic processes (Ch. 7), and signal processing (Ch. 8—available exclusively online and specifically designed for electrical and computer engineers, making the book suitable for a one-term class on random signals and noise). For a year-long course, core chapters (1-4) are accessible to those who have taken a year of univariate differential and integral calculus; matrix algebra, multivariate calculus, and engineering mathematics are needed for the latter, more advanced chapters. At the heart of the textbook’s pedagogy are 1,100 applied exercises, ranging from straightforward to reasonably challenging, roughly 700 exercises in the first four “core” chapters alone—a self-contained textbook of problems introducing basic theoretical knowledge necessary for solving problems and illustrating how to solve the problems at hand – in R and MATLAB, including code so that students can create simulations. New to this edition • Updated and re-worked Recommended Coverage for instructors, detailing which courses should use the textbook and how to utilize different sections for various objectives and time constraints • Extended and revised instructions and solutions to problem sets • Overhaul of Section 7.7 on continuous-time Markov chains • Supplementary materials include three sample syllabi and updated solutions manuals for both instructors and students
Calculus With Applications
DOWNLOAD
Author : Peter D. Lax
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-09-21
Calculus With Applications written by Peter D. Lax and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-09-21 with Mathematics categories.
Burstein, and Lax's Calculus with Applications and Computing offers meaningful explanations of the important theorems of single variable calculus. Written with students in mathematics, the physical sciences, and engineering in mind, and revised with their help, it shows that the themes of calculation, approximation, and modeling are central to mathematics and the main ideas of single variable calculus. This edition brings the innovation of the first edition to a new generation of students. New sections in this book use simple, elementary examples to show that when applying calculus concepts to approximations of functions, uniform convergence is more natural and easier to use than point-wise convergence. As in the original, this edition includes material that is essential for students in science and engineering, including an elementary introduction to complex numbers and complex-valued functions, applications of calculus to modeling vibrations and population dynamics, and an introduction to probability and information theory.
Applications Of Vector Analysis And Complex Variables In Engineering
DOWNLOAD
Author : Otto D. L. Strack
language : en
Publisher: Springer Nature
Release Date : 2020-04-18
Applications Of Vector Analysis And Complex Variables In Engineering written by Otto D. L. Strack and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-04-18 with Technology & Engineering categories.
This textbook presents the application of mathematical methods and theorems tosolve engineering problems, rather than focusing on mathematical proofs. Applications of Vector Analysis and Complex Variables in Engineering explains the mathematical principles in a manner suitable for engineering students, who generally think quite differently than students of mathematics. The objective is to emphasize mathematical methods and applications, rather than emphasizing general theorems and principles, for which the reader is referred to the literature. Vector analysis plays an important role in engineering, and is presented in terms of indicial notation, making use of the Einstein summation convention. This text differs from most texts in that symbolic vector notation is completely avoided, as suggested in the textbooks on tensor algebra and analysis written in German by Duschek and Hochreiner, in the 1960s. The defining properties of vector fields, the divergence and curl, are introduced in terms of fluid mechanics. The integral theorems of Gauss (the divergence theorem), Stokes, and Green are introduced also in the context of fluid mechanics. The final application of vector analysis consists of the introduction of non-Cartesian coordinate systems with straight axes, the formal definition of vectors and tensors. The stress and strain tensors are defined as an application. Partial differential equations of the first and second order are discussed. Two-dimensional linear partial differential equations of the second order are covered, emphasizing the three types of equation: hyperbolic, parabolic, and elliptic. The hyperbolic partial differential equations have two real characteristic directions, and writing the equations along these directions simplifies the solution process. The parabolic partial differential equations have two coinciding characteristics; this gives useful information regarding the character of the equation, but does not help in solving problems. The elliptic partial differential equations do not have real characteristics. In contrast to most texts, rather than abandoning the idea of using characteristics, here the complex characteristics are determined, and the differential equations are written along these characteristics. This leads to a generalized complex variable system, introduced by Wirtinger. The vector field is written in terms of a complex velocity, and the divergence and the curl of the vector field is written in complex form, reducing both equations to a single one. Complex variable methods are applied to elliptical problems in fluid mechanics, and linear elasticity. The techniques presented for solving parabolic problems are the Laplace transform and separation of variables, illustrated for problems of heat flow and soil mechanics. Hyperbolic problems of vibrating strings and bars, governed by the wave equation are solved by the method of characteristics as well as by Laplace transform. The method of characteristics for quasi-linear hyperbolic partial differential equations is illustrated for the case of a failing granular material, such as sand, underneath a strip footing. The Navier Stokes equations are derived and discussed in the final chapter as an illustration of a highly non-linear set of partial differential equations and the solutions are interpreted by illustrating the role of rotation (curl) in energy transfer of a fluid.