Multivariate General Linear Models

DOWNLOAD
Download Multivariate General Linear Models PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Multivariate General Linear Models book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Multivariate Statistical Modelling Based On Generalized Linear Models
DOWNLOAD
Author : Ludwig Fahrmeir
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-11-11
Multivariate Statistical Modelling Based On Generalized Linear Models written by Ludwig Fahrmeir and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-11-11 with Mathematics categories.
Classical statistical models for regression, time series and longitudinal data provide well-established tools for approximately normally distributed vari ables. Enhanced by the availability of software packages these models dom inated the field of applications for a long time. With the introduction of generalized linear models (GLM) a much more flexible instrument for sta tistical modelling has been created. The broad class of GLM's includes some of the classicallinear models as special cases but is particularly suited for categorical discrete or nonnegative responses. The last decade has seen various extensions of GLM's: multivariate and multicategorical models have been considered, longitudinal data analysis has been developed in this setting, random effects and nonparametric pre dictors have been included. These extended methods have grown around generalized linear models but often are no longer GLM's in the original sense. The aim of this book is to bring together and review a large part of these recent advances in statistical modelling. Although the continuous case is sketched sometimes, thoughout the book the focus is on categorical data. The book deals with regression analysis in a wider sense including not only cross-sectional analysis but also time series and longitudinal data situations. We do not consider problems of symmetrical nature, like the investigation of the association structure in a given set of variables. For example, log-linear models for contingency tables, which can be treated as special cases of GLM's are totally omitted. The estimation approach that is primarily considered in this book is likelihood-based.
Univariate And Multivariate General Linear Models
DOWNLOAD
Author : Kevin Kim
language : en
Publisher: CRC Press
Release Date : 2006-10-11
Univariate And Multivariate General Linear Models written by Kevin Kim and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-10-11 with Mathematics categories.
Reviewing the theory of the general linear model (GLM) using a general framework, Univariate and Multivariate General Linear Models: Theory and Applications with SAS, Second Edition presents analyses of simple and complex models, both univariate and multivariate, that employ data sets from a variety of disciplines, such as the social and behavioral sciences. With revised examples that include options available using SAS 9.0, this expanded edition divides theory from applications within each chapter. Following an overview of the GLM, the book introduces unrestricted GLMs to analyze multiple regression and ANOVA designs as well as restricted GLMs to study ANCOVA designs and repeated measurement designs. Extensions of these concepts include GLMs with heteroscedastic errors that encompass weighted least squares regression and categorical data analysis, and multivariate GLMs that cover multivariate regression analysis, MANOVA, MANCOVA, and repeated measurement data analyses. The book also analyzes double multivariate linear, growth curve, seeming unrelated regression (SUR), restricted GMANOVA, and hierarchical linear models. New to the Second Edition Two chapters on finite intersection tests and power analysis that illustrates the experimental GLMPOWER procedure Expanded theory of unrestricted general linear, multivariate general linear, SUR, and restricted GMANOVA models to comprise recent developments Expanded material on missing data to include multiple imputation and the EM algorithm Applications of MI, MIANALYZE, TRANSREG, and CALIS procedures A practical introduction to GLMs, Univariate and Multivariate General Linear Models demonstrates how to fully grasp the generality of GLMs by discussing them within a general framework.
Multivariate General Linear Models
DOWNLOAD
Author : Richard F. Haase
language : en
Publisher: SAGE
Release Date : 2011-11-23
Multivariate General Linear Models written by Richard F. Haase and has been published by SAGE this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-11-23 with Mathematics categories.
This title provides an integrated introduction to multivariate multiple regression analysis (MMR) and multivariate analysis of variance (MANOVA). It defines the key steps in analyzing linear model data and introduces multivariate linear model analysis as a generalization of the univariate model. Richard F. Haase focuses on multivariate measures of association for four common multivariate test statistics, presents a flexible method for testing hypotheses on models, and emphasizes the multivariate procedures attributable to Wilks, Pillai, Hotelling, and Roy.
Multivariate Generalized Linear Mixed Models Using R
DOWNLOAD
Author : Damon Mark Berridge
language : en
Publisher:
Release Date : 2024-10-14
Multivariate Generalized Linear Mixed Models Using R written by Damon Mark Berridge and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-10-14 with Mathematics categories.
In medical and social science research, MGLMMs help disentangle state dependence from incidental parameters. Focusing on these sophisticated data analysis techniques, this work presents robust and methodologically sound models for analyzing large and complex data sets--enabling readers to answer increasingly complex research questions. It applies
Generalized Linear Models With Examples In R
DOWNLOAD
Author : Peter K. Dunn
language : en
Publisher: Springer
Release Date : 2018-11-10
Generalized Linear Models With Examples In R written by Peter K. Dunn and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-11-10 with Mathematics categories.
This textbook presents an introduction to generalized linear models, complete with real-world data sets and practice problems, making it applicable for both beginning and advanced students of applied statistics. Generalized linear models (GLMs) are powerful tools in applied statistics that extend the ideas of multiple linear regression and analysis of variance to include response variables that are not normally distributed. As such, GLMs can model a wide variety of data types including counts, proportions, and binary outcomes or positive quantities. The book is designed with the student in mind, making it suitable for self-study or a structured course. Beginning with an introduction to linear regression, the book also devotes time to advanced topics not typically included in introductory textbooks. It features chapter introductions and summaries, clear examples, and many practice problems, all carefully designed to balance theory and practice. The text also provides a working knowledge of applied statistical practice through the extensive use of R, which is integrated into the text. Other features include: • Advanced topics such as power variance functions, saddlepoint approximations, likelihood score tests, modified profile likelihood, small-dispersion asymptotics, and randomized quantile residuals • Nearly 100 data sets in the companion R package GLMsData • Examples that are cross-referenced to the companion data set, allowing readers to load the data and follow the analysis in their own R session
Generalized Linear Models Second Edition
DOWNLOAD
Author : P. McCullagh
language : en
Publisher: CRC Press
Release Date : 1989-08-01
Generalized Linear Models Second Edition written by P. McCullagh and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 1989-08-01 with Mathematics categories.
The success of the first edition of Generalized Linear Models led to the updated Second Edition, which continues to provide a definitive unified, treatment of methods for the analysis of diverse types of data. Today, it remains popular for its clarity, richness of content and direct relevance to agricultural, biological, health, engineering, and other applications. The authors focus on examining the way a response variable depends on a combination of explanatory variables, treatment, and classification variables. They give particular emphasis to the important case where the dependence occurs through some unknown, linear combination of the explanatory variables. The Second Edition includes topics added to the core of the first edition, including conditional and marginal likelihood methods, estimating equations, and models for dispersion effects and components of dispersion. The discussion of other topics-log-linear and related models, log odds-ratio regression models, multinomial response models, inverse linear and related models, quasi-likelihood functions, and model checking-was expanded and incorporates significant revisions. Comprehension of the material requires simply a knowledge of matrix theory and the basic ideas of probability theory, but for the most part, the book is self-contained. Therefore, with its worked examples, plentiful exercises, and topics of direct use to researchers in many disciplines, Generalized Linear Models serves as ideal text, self-study guide, and reference.
The Multivariate Social Scientist
DOWNLOAD
Author : Graeme D Hutcheson
language : en
Publisher: SAGE
Release Date : 1999-05-19
The Multivariate Social Scientist written by Graeme D Hutcheson and has been published by SAGE this book supported file pdf, txt, epub, kindle and other format this book has been release on 1999-05-19 with Social Science categories.
Starting from simple hypothesis testing and then moving towards model-building, this valuable book takes readers through the basics of multivariate analysis including: which tests to use on which data; how to run analyses in SPSS for Windows and GLIM4; how to interpret results; and how to report and present the reports appropriately. Using a unified conceptual framework (based around the Generalized Linear Model) the authors explain the commonalities and relationships between methods that include both the analysis of categorical and continuous data.
Data Analysis Using Hierarchical Generalized Linear Models With R
DOWNLOAD
Author : Youngjo Lee
language : en
Publisher: CRC Press
Release Date : 2017-07-06
Data Analysis Using Hierarchical Generalized Linear Models With R written by Youngjo Lee and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-07-06 with Mathematics categories.
Since their introduction, hierarchical generalized linear models (HGLMs) have proven useful in various fields by allowing random effects in regression models. Interest in the topic has grown, and various practical analytical tools have been developed. This book summarizes developments within the field and, using data examples, illustrates how to analyse various kinds of data using R. It provides a likelihood approach to advanced statistical modelling including generalized linear models with random effects, survival analysis and frailty models, multivariate HGLMs, factor and structural equation models, robust modelling of random effects, models including penalty and variable selection and hypothesis testing. This example-driven book is aimed primarily at researchers and graduate students, who wish to perform data modelling beyond the frequentist framework, and especially for those searching for a bridge between Bayesian and frequentist statistics.
Generalized Linear Models And Extensions Second Edition
DOWNLOAD
Author : James W. Hardin
language : en
Publisher: Stata Press
Release Date : 2007
Generalized Linear Models And Extensions Second Edition written by James W. Hardin and has been published by Stata Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007 with Computers categories.
Deftly balancing theory and application, this book stands out in its coverage of the derivation of the GLM families and their foremost links. This edition has new sections on discrete response models, including zero-truncated, zero-inflated, censored, and hurdle count models, as well as heterogeneous negative binomial, and more.
Beyond Multiple Linear Regression
DOWNLOAD
Author : Paul Roback
language : en
Publisher: CRC Press
Release Date : 2021-01-14
Beyond Multiple Linear Regression written by Paul Roback and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-01-14 with Mathematics categories.
Beyond Multiple Linear Regression: Applied Generalized Linear Models and Multilevel Models in R is designed for undergraduate students who have successfully completed a multiple linear regression course, helping them develop an expanded modeling toolkit that includes non-normal responses and correlated structure. Even though there is no mathematical prerequisite, the authors still introduce fairly sophisticated topics such as likelihood theory, zero-inflated Poisson, and parametric bootstrapping in an intuitive and applied manner. The case studies and exercises feature real data and real research questions; thus, most of the data in the textbook comes from collaborative research conducted by the authors and their students, or from student projects. Every chapter features a variety of conceptual exercises, guided exercises, and open-ended exercises using real data. After working through this material, students will develop an expanded toolkit and a greater appreciation for the wider world of data and statistical modeling. A solutions manual for all exercises is available to qualified instructors at the book’s website at www.routledge.com, and data sets and Rmd files for all case studies and exercises are available at the authors’ GitHub repo (https://github.com/proback/BeyondMLR)