Multivariate Multilinear And Mixed Linear Models

DOWNLOAD
Download Multivariate Multilinear And Mixed Linear Models PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Multivariate Multilinear And Mixed Linear Models book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Multivariate Multilinear And Mixed Linear Models
DOWNLOAD
Author : Katarzyna Filipiak
language : en
Publisher: Springer Nature
Release Date : 2021-10-01
Multivariate Multilinear And Mixed Linear Models written by Katarzyna Filipiak and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-10-01 with Mathematics categories.
This book presents the latest findings on statistical inference in multivariate, multilinear and mixed linear models, providing a holistic presentation of the subject. It contains pioneering and carefully selected review contributions by experts in the field and guides the reader through topics related to estimation and testing of multivariate and mixed linear model parameters. Starting with the theory of multivariate distributions, covering identification and testing of covariance structures and means under various multivariate models, it goes on to discuss estimation in mixed linear models and their transformations. The results presented originate from the work of the research group Multivariate and Mixed Linear Models and their meetings held at the Mathematical Research and Conference Center in Będlewo, Poland, over the last 10 years. Featuring an extensive bibliography of related publications, the book is intended for PhD students and researchers in modern statistical science who are interested in multivariate and mixed linear models.
Multivariate Generalized Linear Mixed Models Using R
DOWNLOAD
Author : Damon Mark Berridge
language : en
Publisher:
Release Date : 2024-10-14
Multivariate Generalized Linear Mixed Models Using R written by Damon Mark Berridge and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-10-14 with Mathematics categories.
In medical and social science research, MGLMMs help disentangle state dependence from incidental parameters. Focusing on these sophisticated data analysis techniques, this work presents robust and methodologically sound models for analyzing large and complex data sets--enabling readers to answer increasingly complex research questions. It applies
Beyond Multiple Linear Regression
DOWNLOAD
Author : Paul Roback
language : en
Publisher: CRC Press
Release Date : 2021-01-14
Beyond Multiple Linear Regression written by Paul Roback and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-01-14 with Mathematics categories.
Beyond Multiple Linear Regression: Applied Generalized Linear Models and Multilevel Models in R is designed for undergraduate students who have successfully completed a multiple linear regression course, helping them develop an expanded modeling toolkit that includes non-normal responses and correlated structure. Even though there is no mathematical prerequisite, the authors still introduce fairly sophisticated topics such as likelihood theory, zero-inflated Poisson, and parametric bootstrapping in an intuitive and applied manner. The case studies and exercises feature real data and real research questions; thus, most of the data in the textbook comes from collaborative research conducted by the authors and their students, or from student projects. Every chapter features a variety of conceptual exercises, guided exercises, and open-ended exercises using real data. After working through this material, students will develop an expanded toolkit and a greater appreciation for the wider world of data and statistical modeling. A solutions manual for all exercises is available to qualified instructors at the book’s website at www.routledge.com, and data sets and Rmd files for all case studies and exercises are available at the authors’ GitHub repo (https://github.com/proback/BeyondMLR)
Linear Mixed Models
DOWNLOAD
Author : Brady T. West
language : en
Publisher: CRC Press
Release Date : 2006-11-22
Linear Mixed Models written by Brady T. West and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-11-22 with Mathematics categories.
Simplifying the often confusing array of software programs for fitting linear mixed models (LMMs), Linear Mixed Models: A Practical Guide Using Statistical Software provides a basic introduction to primary concepts, notation, software implementation, model interpretation, and visualization of clustered and longitudinal data. This easy-to-nav
Univariate And Multivariate General Linear Models
DOWNLOAD
Author : Kevin Kim
language : en
Publisher: CRC Press
Release Date : 2006-10-11
Univariate And Multivariate General Linear Models written by Kevin Kim and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-10-11 with Mathematics categories.
Reviewing the theory of the general linear model (GLM) using a general framework, Univariate and Multivariate General Linear Models: Theory and Applications with SAS, Second Edition presents analyses of simple and complex models, both univariate and multivariate, that employ data sets from a variety of disciplines, such as the social and behavioral sciences. With revised examples that include options available using SAS 9.0, this expanded edition divides theory from applications within each chapter. Following an overview of the GLM, the book introduces unrestricted GLMs to analyze multiple regression and ANOVA designs as well as restricted GLMs to study ANCOVA designs and repeated measurement designs. Extensions of these concepts include GLMs with heteroscedastic errors that encompass weighted least squares regression and categorical data analysis, and multivariate GLMs that cover multivariate regression analysis, MANOVA, MANCOVA, and repeated measurement data analyses. The book also analyzes double multivariate linear, growth curve, seeming unrelated regression (SUR), restricted GMANOVA, and hierarchical linear models. New to the Second Edition Two chapters on finite intersection tests and power analysis that illustrates the experimental GLMPOWER procedure Expanded theory of unrestricted general linear, multivariate general linear, SUR, and restricted GMANOVA models to comprise recent developments Expanded material on missing data to include multiple imputation and the EM algorithm Applications of MI, MIANALYZE, TRANSREG, and CALIS procedures A practical introduction to GLMs, Univariate and Multivariate General Linear Models demonstrates how to fully grasp the generality of GLMs by discussing them within a general framework.
Linear Models In Statistics
DOWNLOAD
Author : Alvin C. Rencher
language : en
Publisher: John Wiley & Sons
Release Date : 2008-01-07
Linear Models In Statistics written by Alvin C. Rencher and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-01-07 with Mathematics categories.
The essential introduction to the theory and application of linear models—now in a valuable new edition Since most advanced statistical tools are generalizations of the linear model, it is neces-sary to first master the linear model in order to move forward to more advanced concepts. The linear model remains the main tool of the applied statistician and is central to the training of any statistician regardless of whether the focus is applied or theoretical. This completely revised and updated new edition successfully develops the basic theory of linear models for regression, analysis of variance, analysis of covariance, and linear mixed models. Recent advances in the methodology related to linear mixed models, generalized linear models, and the Bayesian linear model are also addressed. Linear Models in Statistics, Second Edition includes full coverage of advanced topics, such as mixed and generalized linear models, Bayesian linear models, two-way models with empty cells, geometry of least squares, vector-matrix calculus, simultaneous inference, and logistic and nonlinear regression. Algebraic, geometrical, frequentist, and Bayesian approaches to both the inference of linear models and the analysis of variance are also illustrated. Through the expansion of relevant material and the inclusion of the latest technological developments in the field, this book provides readers with the theoretical foundation to correctly interpret computer software output as well as effectively use, customize, and understand linear models. This modern Second Edition features: New chapters on Bayesian linear models as well as random and mixed linear models Expanded discussion of two-way models with empty cells Additional sections on the geometry of least squares Updated coverage of simultaneous inference The book is complemented with easy-to-read proofs, real data sets, and an extensive bibliography. A thorough review of the requisite matrix algebra has been addedfor transitional purposes, and numerous theoretical and applied problems have been incorporated with selected answers provided at the end of the book. A related Web site includes additional data sets and SAS® code for all numerical examples. Linear Model in Statistics, Second Edition is a must-have book for courses in statistics, biostatistics, and mathematics at the upper-undergraduate and graduate levels. It is also an invaluable reference for researchers who need to gain a better understanding of regression and analysis of variance.
Hierarchical Linear Models
DOWNLOAD
Author : Stephen W. Raudenbush
language : en
Publisher: SAGE
Release Date : 2002
Hierarchical Linear Models written by Stephen W. Raudenbush and has been published by SAGE this book supported file pdf, txt, epub, kindle and other format this book has been release on 2002 with Mathematics categories.
New edition of a text in which Raudenbush (U. of Michigan) and Bryk (sociology, U. of Chicago) provide examples, explanations, and illustrations of the theory and use of hierarchical linear models (HLM). New material in Part I (Logic) includes information on multivariate growth models and other topics.
Multivariable Modeling And Multivariate Analysis For The Behavioral Sciences
DOWNLOAD
Author : Brian S. Everitt
language : en
Publisher: CRC Press
Release Date : 2009-09-28
Multivariable Modeling And Multivariate Analysis For The Behavioral Sciences written by Brian S. Everitt and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-09-28 with Business & Economics categories.
Multivariable Modeling and Multivariate Analysis for the Behavioral Sciences shows students how to apply statistical methods to behavioral science data in a sensible manner. Assuming some familiarity with introductory statistics, the book analyzes a host of real-world data to provide useful answers to real-life issues.The author begins by exploring
Multiple Regression And Beyond
DOWNLOAD
Author : Timothy Z. Keith
language : en
Publisher: Routledge
Release Date : 2019-01-14
Multiple Regression And Beyond written by Timothy Z. Keith and has been published by Routledge this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-01-14 with Education categories.
Companion Website materials: https://tzkeith.com/ Multiple Regression and Beyond offers a conceptually-oriented introduction to multiple regression (MR) analysis and structural equation modeling (SEM), along with analyses that flow naturally from those methods. By focusing on the concepts and purposes of MR and related methods, rather than the derivation and calculation of formulae, this book introduces material to students more clearly, and in a less threatening way. In addition to illuminating content necessary for coursework, the accessibility of this approach means students are more likely to be able to conduct research using MR or SEM--and more likely to use the methods wisely. This book: • Covers both MR and SEM, while explaining their relevance to one another • Includes path analysis, confirmatory factor analysis, and latent growth modeling • Makes extensive use of real-world research examples in the chapters and in the end-of-chapter exercises • Extensive use of figures and tables providing examples and illustrating key concepts and techniques New to this edition: • New chapter on mediation, moderation, and common cause • New chapter on the analysis of interactions with latent variables and multilevel SEM • Expanded coverage of advanced SEM techniques in chapters 18 through 22 • International case studies and examples • Updated instructor and student online resources
Methodology And Applications Of Statistics
DOWNLOAD
Author : Barry C. Arnold
language : en
Publisher: Springer Nature
Release Date : 2022-01-04
Methodology And Applications Of Statistics written by Barry C. Arnold and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-01-04 with Mathematics categories.
Dedicated to one of the most outstanding researchers in the field of statistics, this volume in honor of C.R. Rao, on the occasion of his 100th birthday, provides a bird’s-eye view of a broad spectrum of research topics, paralleling C.R. Rao’s wide-ranging research interests. The book’s contributors comprise a representative sample of the countless number of researchers whose careers have been influenced by C.R. Rao, through his work or his personal aid and advice. As such, written by experts from more than 15 countries, the book’s original and review contributions address topics including statistical inference, distribution theory, estimation theory, multivariate analysis, hypothesis testing, statistical modeling, design and sampling, shape and circular analysis, and applications. The book will appeal to statistics researchers, theoretical and applied alike, and PhD students. Happy Birthday, C.R. Rao!