Nanoporous Materials For Gas Storage

DOWNLOAD
Download Nanoporous Materials For Gas Storage PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Nanoporous Materials For Gas Storage book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Nanoporous Materials For Gas Storage
DOWNLOAD
Author : Katsumi Kaneko
language : en
Publisher: Springer
Release Date : 2019-04-27
Nanoporous Materials For Gas Storage written by Katsumi Kaneko and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-04-27 with Technology & Engineering categories.
This book shows the promising future and essential issues on the storage of the supercritical gases, including hydrogen, methane and carbon dioxide, by adsorption with controlling the gas-solid interaction by use of designed nanoporous materials. It explains the reason why the storage of these gases with adsorption is difficult from the fundamentals in terms of gas-solid interaction. It consists of 14 chapters which describe fundamentals, application, key nanoporous materials (nanoporous carbon, metal organic frame works, zeolites) and their storage performance for hydrogen, methane, and carbon dioxide. Thus, this book appeals to a wide readership of the academic and industrial researchers and it can also be used in the classroom for graduate students focusing on clean energy technology, green chemistry, energy conversion and storage, chemical engineering, nanomaterials science and technology, surface and interface science, adsorption science and technology, carbon science and technology, metal organic framework science, zeolite science, nanoporous materials science, nanotechnology, environmental protection, and gas sensors.
Nanoporous Materials Science And Engineering
DOWNLOAD
Author : G Q Max Lu
language : en
Publisher: World Scientific
Release Date : 2004-11-22
Nanoporous Materials Science And Engineering written by G Q Max Lu and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2004-11-22 with Technology & Engineering categories.
Porous materials are of scientific and technological importance because of the presence of voids of controllable dimensions at the atomic, molecular, and nanometer scales, enabling them to discriminate and interact with molecules and clusters. Interestingly the big deal about this class of materials is about the “nothingness” within — the pore space. International Union of Pure and Applied Chemistry (IUPAC) classifies porous materials into three categories — micropores of less than 2 nm in diameter, mesopores between 2 and 50 nm, and macropores of greater than 50 nm. In this book, nanoporous materials are defined as those porous materials with pore diameters less than 100 nm.Over the last decade, there has been an ever increasing interest and research effort in the synthesis, characterization, functionalization, molecular modeling and design of nanoporous materials. The main challenges in research include the fundamental understanding of structure-property relations and tailor-design of nanostructures for specific properties and applications. Research efforts in this field have been driven by the rapid growing emerging applications such as biosensor, drug delivery, gas separation, energy storage and fuel cell technology, nanocatalysis and photonics. These applications offer exciting new opportunities for scientists to develop new strategies and techniques for the synthesis and applications of these materials.This book provides a series of systematic reviews of the recent developments in nanoporous materials. It covers the following topics: (1) synthesis, processing, characterization and property evaluation; (2) functionalization by physical and/or chemical treatments; (3) experimental and computational studies on fundamental properties, such as catalytic effects, transport and adsorption, molecular sieving and biosorption; (4) applications, including photonic devices, catalysis, environmental pollution control, biological molecules separation and isolation, sensors, membranes, hydrogen and energy storage, etc./a
Computation Assisted Discovery Of Nanoporous Materials For Gas Storage And Separations
DOWNLOAD
Author : Cory Simon
language : en
Publisher:
Release Date : 2016
Computation Assisted Discovery Of Nanoporous Materials For Gas Storage And Separations written by Cory Simon and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016 with categories.
Nanoporous materials, such as metal-organic frameworks (MOFs), have enormous internal surface areas. Their consequent adsorption properties demonstrate promise towards solving energy-related problems in gas storage and gas separations. Owing to their modular and versatile chemistry, millions of possible nanoporous materials can be synthesized. This vast chemical space allows a material to be tailor-made or fine-tuned to target specific adsorbate molecules and conditions. In this thesis, we utilize molecular models and simulations of gas adsorption in both existing and predicted nanoporous material structures to accelerate the discovery of new materials targeted for gas storage and separations at specific conditions. In the first part of this work, we approach the problem of identifying an optimal porous material to densify natural gas for storage onboard vehicles as fuel. We developed a series of statistical mechanical models to find the thermodynamic parameters that optimize the deliverable capacity of a material. We conclude that the heat of adsorption, which is a commonly used metric to evaluate materials for natural gas storage, is a misleading metric because the optimal heat of adsorption depends on the pore size. Our models also reveal that adsorbate-adsorbate attractions-- in the case where multiple methane molecules can fit into a pore-- can enhance the deliverable capacity. Next, we carried out a high-throughput computational screening of metal-organic frameworks, porous polymer networks, zeolites, and zeolitic imidazolate frameworks for natural gas storage. The data that we collected provide candidate structures for synthesis, reveal relationships between structural characteristics and performance, and suggest that it may be difficult to reach the current Advanced Research Project Agency-Energy (ARPA-E) deliverable capacity target. To assess thermodynamic limits to the methane deliverable capacity, we then built a model of an extreme scenario where an energy field can be created without taking up space with material. This model suggests that, while the failure to reach the ARPA-E storage target is due to material design constraints rather than purely thermodynamic constraints, the ARPA-E storage target is ambitiously close to the thermodynamic limit. In the second part of this work, we approach the problem of identifying a material that selectively adsorbs xenon over krypton. With over half a million nanoporous material structures to consider as candidate adsorbents, the computational cost of a brute-force computational screening strategy was prohibitive. Instead, we employed a machine learning algorithm, a random forest, to learn the relationship between quickly computed structural descriptors and Xe/Kr selectivity, which is more expensive to compute. The trained random forest allowed us to rule out a large percentage of the materials on the basis of quickly-computed structural descriptors. Our machine learning accelerated screening pinpoints top candidates on which to focus experimental efforts and elucidates structure-property relationships for design guidelines for a Xe-selective material. As we are now working with mixed gas adsorption, we developed a user-friendly software package in Python, pyIAST, for ideal adsorbed solution theory (IAST) calculations. IAST is a thermodynamic framework to predict mixed gas adsorption from pure-component adsorption isotherms, which are easier to measure. We provide practical guidelines for applying IAST. Finally, we carry out a high-throughput computational screening of metal-organic frameworks for capturing Xe from air at dilute conditions, a separation encountered in used nuclear fuel reprocessing. Our computational screening, facilitated by a parallelized code on GPUs, predicted a metal-organic framework, SBMOF-1, to be among the most Xe-selective. Our experimental collaborators synthesized and tested SBMOF-1 and found it to exhibit the highest Xe/Kr selectivity and Xe Henry coefficient reported in the literature. Column-breakthrough experiments reveal that SBMOF-1 is a near-term material for capturing xenon from the off-gases of used nuclear fuel reprocessing plants. This is a rare case of a computation-assisted materials discovery.
Gas Adsorption In Metal Organic Frameworks
DOWNLOAD
Author : T. Grant Glover
language : en
Publisher: CRC Press
Release Date : 2018-09-03
Gas Adsorption In Metal Organic Frameworks written by T. Grant Glover and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-09-03 with Technology & Engineering categories.
This text discusses the synthesis, characterization, and application of metal-organic frameworks (MOFs) for the purpose of adsorbing gases. It provides details on the fundamentals of thermodynamics, mass transfer, and diffusion that are commonly required when evaluating MOF materials for gas separation and storage applications and includes a discussion of molecular simulation tools needed to examine gas adsorption in MOFs. Additionally, the work presents techniques that can be used to characterize MOFs after gas adsorption has occurred and provides guidance on the water stability of these materials. Lastly, applications of MOFs are considered with a discussion of how to measure the gas storage capacity of MOFs, a discussion of how to screen MOFs to for filtration applications, and a discussion of the use of MOFs to perform industrial separations, such as olefin/paraffin separations. Throughout the work, fundamental information, such as a discussion on the calculation of MOF surface area and description of adsorption phenomena in packed-beds, is balanced with a discussion of the results from research literature.
Hydrogen Storage Materials
DOWNLOAD
Author : R.G. Barnes
language : en
Publisher: Trans Tech Publications Ltd
Release Date : 1988-01-01
Hydrogen Storage Materials written by R.G. Barnes and has been published by Trans Tech Publications Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 1988-01-01 with Technology & Engineering categories.
Ames Laboratory, Iowa, USA
Adsorption And Diffusion
DOWNLOAD
Author : Hellmut G. Karge
language : en
Publisher: Springer Science & Business Media
Release Date : 2008-06-17
Adsorption And Diffusion written by Hellmut G. Karge and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-06-17 with Science categories.
"Molecular Sieves - Science and Technology" covers, in a comprehensive manner, the science and technology of zeolites and all related microporous and mesoporous materials. Authored by renowned experts, the contributions to this handbook-like series are grouped together topically in such a way that each volume deals with a specific sub-field. Volume 7 is treating fundamentals and analyses of adsorption and diffusion in zeolites including single-file diffusion, i.e. phenomena of basic importance, especially with respect to separation processes and catalysis. Various methods of measuring adsorption and diffusion are described and discussed, i.e. techniques such as chromatographic, gravimetric and barometric uptake and desorption, nuclear magnetic resonance, infrared spectroscopy, interference microscopy, neutron scattering, frequency response as well as proton profiling.
Adsorption By Powders And Porous Solids
DOWNLOAD
Author : Jean Rouquerol
language : en
Publisher: Elsevier
Release Date : 1998-10-05
Adsorption By Powders And Porous Solids written by Jean Rouquerol and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 1998-10-05 with Technology & Engineering categories.
The declared objective of this book is to provide an introductory review of the various theoretical and practical aspects of adsorption by powders and porous solids with particular reference to materials of technological importance. The primary aim is to meet the needs of students and non-specialists, who are new to surface science or who wish to use the advanced techniques now available for the determination of surface area, pore size and surface characterization. In addition, a critical account is given of recent work on the adsorptive properties of activated carbons, oxides, clays and zeolites. - Provides a comprehensive treatment of adsorption at both the gas/solid interface and the liquid/solid interface - Includes chapters dealing with experimental methodology and the interpretation of adsorption data obtained with porous oxides, carbons and zeolites - Techniques capture the importance of heterogeneous catalysis, chemical engineering and the production of pigments, cements, agrochemicals, and pharmaceuticals
Materials For Carbon Capture
DOWNLOAD
Author : De-en Jiang
language : en
Publisher: John Wiley & Sons
Release Date : 2020-02-25
Materials For Carbon Capture written by De-en Jiang and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-02-25 with Science categories.
Covers a wide range of advanced materials and technologies for CO2 capture As a frontier research area, carbon capture has been a major driving force behind many materials technologies. This book highlights the current state-of-the-art in materials for carbon capture, providing a comprehensive understanding of separations ranging from solid sorbents to liquid sorbents and membranes. Filled with diverse and unconventional topics throughout, it seeks to inspire students, as well as experts, to go beyond the novel materials highlighted and develop new materials with enhanced separations properties. Edited by leading authorities in the field, Materials for Carbon Capture offers in-depth chapters covering: CO2 Capture and Separation of Metal-Organic Frameworks; Porous Carbon Materials: Designed Synthesis and CO2 Capture; Porous Aromatic Frameworks for Carbon Dioxide Capture; and Virtual Screening of Materials for Carbon Capture. Other chapters look at Ultrathin Membranes for Gas Separation; Polymeric Membranes; Carbon Membranes for CO2 Separation; and Composite Materials for Carbon Captures. The book finishes with sections on Poly(amidoamine) Dendrimers for Carbon Capture and Ionic Liquids for Chemisorption of CO2 and Ionic Liquid-Based Membranes. A comprehensive overview and survey of the present status of materials and technologies for carbon capture Covers materials synthesis, gas separations, membrane fabrication, and CO2 removal to highlight recent progress in the materials and chemistry aspects of carbon capture Allows the reader to better understand the challenges and opportunities in carbon capture Edited by leading experts working on materials and membranes for carbon separation and capture Materials for Carbon Capture is an excellent book for advanced students of chemistry, materials science, chemical and energy engineering, and early career scientists who are interested in carbon capture. It will also be of great benefit to researchers in academia, national labs, research institutes, and industry working in the field of gas separations and carbon capture.
Nanoporous Materials
DOWNLOAD
Author : Samuel B. Jenkins
language : en
Publisher:
Release Date : 2010
Nanoporous Materials written by Samuel B. Jenkins and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010 with Technology & Engineering categories.
Nanoporous materials consist of a regular organic or inorganic framework supporting a porous structure. Nanoporous materials are separated into three subtypes: microporous materials, mesoporous materials and macroporous materials. In recent years, nanoporous materials have been recognized as promising candidates for the multifunctional applications such as catalysis, ion-exchange, gas storage low density magnetic storage, etc. In addition, nanoporous materials are also of scientific and technological importance because of their ability to absorb and co-operate with atoms, ions and molecules on their sizeable interior surfaces and pore space. This book proposes and reviews advances being made in the field of nanoporous materials.
Chemistry Of Zeolites And Related Porous Materials
DOWNLOAD
Author : Ruren Xu
language : en
Publisher: John Wiley & Sons
Release Date : 2009-05-29
Chemistry Of Zeolites And Related Porous Materials written by Ruren Xu and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-05-29 with Science categories.
Widely used in adsorption, catalysis and ion exchange, the family of molecular sieves such as zeolites has been greatly extended and many advances have recently been achieved in the field of molecular sieves synthesis and related porous materials. Chemistry of Zeolites and Related Porous Materials focuses on the synthetic and structural chemistry of the major types of molecular sieves. It offers a systematic introduction to and an in-depth discussion of microporous, mesoporous, and macroporous materials and also includes metal-organic frameworks. Provides focused coverage of the key aspects of molecular sieves Features two frontier subjects: molecular engineering and host-guest advanced materials Comprehensively covers both theory and application with particular emphasis on industrial uses This book is essential reading for researches in the chemical and materials industries and research institutions. The book is also indispensable for researches and engineers in R&D (for catalysis) divisions of companies in petroleum refining and the petrochemical and fine chemical industries.