[PDF] Natural Language Processing For Social Media - eBooks Review

Natural Language Processing For Social Media


Natural Language Processing For Social Media
DOWNLOAD

Download Natural Language Processing For Social Media PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Natural Language Processing For Social Media book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Natural Language Processing For Social Media Third Edition


Natural Language Processing For Social Media Third Edition
DOWNLOAD
Author : Anna Atefeh Farzindar
language : en
Publisher: Springer Nature
Release Date : 2022-05-31

Natural Language Processing For Social Media Third Edition written by Anna Atefeh Farzindar and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-05-31 with Computers categories.


In recent years, online social networking has revolutionized interpersonal communication. The newer research on language analysis in social media has been increasingly focusing on the latter's impact on our daily lives, both on a personal and a professional level. Natural language processing (NLP) is one of the most promising avenues for social media data processing. It is a scientific challenge to develop powerful methods and algorithms that extract relevant information from a large volume of data coming from multiple sources and languages in various formats or in free form. This book will discuss the challenges in analyzing social media texts in contrast with traditional documents. Research methods in information extraction, automatic categorization and clustering, automatic summarization and indexing, and statistical machine translation need to be adapted to a new kind of data. This book reviews the current research on NLP tools and methods for processing the non-traditional information from social media data that is available in large amounts, and it shows how innovative NLP approaches can integrate appropriate linguistic information in various fields such as social media monitoring, health care, and business intelligence. The book further covers the existing evaluation metrics for NLP and social media applications and the new efforts in evaluation campaigns or shared tasks on new datasets collected from social media. Such tasks are organized by the Association for Computational Linguistics (such as SemEval tasks), the National Institute of Standards and Technology via the Text REtrieval Conference (TREC) and the Text Analysis Conference (TAC), or the Conference and Labs of the Evaluation Forum (CLEF). In this third edition of the book, the authors added information about recent progress in NLP for social media applications, including more about the modern techniques provided by deep neural networks (DNNs) for modeling language and analyzing social media data.



Natural Language Processing For Social Media


Natural Language Processing For Social Media
DOWNLOAD
Author : Atefeh Farzindar
language : en
Publisher: Morgan & Claypool Publishers
Release Date : 2017-12-15

Natural Language Processing For Social Media written by Atefeh Farzindar and has been published by Morgan & Claypool Publishers this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-12-15 with Computers categories.


In recent years, online social networking has revolutionized interpersonal communication. The newer research on language analysis in social media has been increasingly focusing on the latter's impact on our daily lives, both on a personal and a professional level. Natural language processing (NLP) is one of the most promising avenues for social media data processing. It is a scientific challenge to develop powerful methods and algorithms which extract relevant information from a large volume of data coming from multiple sources and languages in various formats or in free form. We discuss the challenges in analyzing social media texts in contrast with traditional documents. Research methods in information extraction, automatic categorization and clustering, automatic summarization and indexing, and statistical machine translation need to be adapted to a new kind of data. This book reviews the current research on NLP tools and methods for processing the non-traditional information from social media data that is available in large amounts (big data), and shows how innovative NLP approaches can integrate appropriate linguistic information in various fields such as social media monitoring, healthcare, business intelligence, industry, marketing, and security and defence. We review the existing evaluation metrics for NLP and social media applications, and the new efforts in evaluation campaigns or shared tasks on new datasets collected from social media. Such tasks are organized by the Association for Computational Linguistics (such as SemEval tasks) or by the National Institute of Standards and Technology via the Text REtrieval Conference (TREC) and the Text Analysis Conference (TAC). In the concluding chapter, we discuss the importance of this dynamic discipline and its great potential for NLP in the coming decade, in the context of changes in mobile technology, cloud computing, virtual reality, and social networking. In this second edition, we have added information about recent progress in the tasks and applications presented in the first edition. We discuss new methods and their results. The number of research projects and publications that use social media data is constantly increasing due to continuously growing amounts of social media data and the need to automatically process them. We have added 85 new references to the more than 300 references from the first edition. Besides updating each section, we have added a new application (digital marketing) to the section on media monitoring and we have augmented the section on healthcare applications with an extended discussion of recent research on detecting signs of mental illness from social media.



Natural Language Processing For Social Media


Natural Language Processing For Social Media
DOWNLOAD
Author : Atefeh Farzindar
language : en
Publisher: Springer Nature
Release Date : 2022-11-10

Natural Language Processing For Social Media written by Atefeh Farzindar and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-11-10 with Computers categories.


In recent years, online social networking has revolutionized interpersonal communication. The newer research on language analysis in social media has been increasingly focusing on the latter's impact on our daily lives, both on a personal and a professional level. Natural language processing (NLP) is one of the most promising avenues for social media data processing. It is a scientific challenge to develop powerful methods and algorithms which extract relevant information from a large volume of data coming from multiple sources and languages in various formats or in free form. We discuss the challenges in analyzing social media texts in contrast with traditional documents. Research methods in information extraction, automatic categorization and clustering, automatic summarization and indexing, and statistical machine translation need to be adapted to a new kind of data. This book reviews the current research on Natural Language Processing (NLP) tools and methods for processing the non-traditional information from social media data that is available in large amounts (big data), and shows how innovative NLP approaches can integrate appropriate linguistic information in various fields such as social media monitoring, health care, business intelligence, industry, marketing, and security and defense. We review the existing evaluation metrics for NLP and social media applications, and the new efforts in evaluation campaigns or shared tasks on new datasets collected from social media. Such tasks are organized by the Association for Computational Linguistics (such as SemEval tasks) or by the National Institute of Standards and Technology via the Text REtrieval Conference (TREC) and the Text Analysis Conference (TAC). In the concluding chapter, we discuss the importance of this dynamic discipline and its great potential for NLP in the coming decade, in the context of changes in mobile technology, cloud computing, and social networking.



Natural Language Processing For Social Media


Natural Language Processing For Social Media
DOWNLOAD
Author : Anna Atefeh Farzindar
language : en
Publisher: Morgan & Claypool Publishers
Release Date : 2020-04-10

Natural Language Processing For Social Media written by Anna Atefeh Farzindar and has been published by Morgan & Claypool Publishers this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-04-10 with Computers categories.


In recent years, online social networking has revolutionized interpersonal communication. The newer research on language analysis in social media has been increasingly focusing on the latter's impact on our daily lives, both on a personal and a professional level. Natural language processing (NLP) is one of the most promising avenues for social media data processing. It is a scientific challenge to develop powerful methods and algorithms that extract relevant information from a large volume of data coming from multiple sources and languages in various formats or in free form. This book will discuss the challenges in analyzing social media texts in contrast with traditional documents. Research methods in information extraction, automatic categorization and clustering, automatic summarization and indexing, and statistical machine translation need to be adapted to a new kind of data. This book reviews the current research on NLP tools and methods for processing the non-traditional information from social media data that is available in large amounts, and it shows how innovative NLP approaches can integrate appropriate linguistic information in various fields such as social media monitoring, health care, and business intelligence. The book further covers the existing evaluation metrics for NLP and social media applications and the new efforts in evaluation campaigns or shared tasks on new datasets collected from social media. Such tasks are organized by the Association for Computational Linguistics (such as SemEval tasks), the National Institute of Standards and Technology via the Text REtrieval Conference (TREC) and the Text Analysis Conference (TAC), or the Conference and Labs of the Evaluation Forum (CLEF). In this third edition of the book, the authors added information about recent progress in NLP for social media applications, including more about the modern techniques provided by deep neural networks (DNNs) for modeling language and analyzing social media data.



Mapping The Public Voice For Development Natural Language Processing Of Social Media Text Data


Mapping The Public Voice For Development Natural Language Processing Of Social Media Text Data
DOWNLOAD
Author : Asian Development Bank
language : en
Publisher: Asian Development Bank
Release Date : 2022-08-01

Mapping The Public Voice For Development Natural Language Processing Of Social Media Text Data written by Asian Development Bank and has been published by Asian Development Bank this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-08-01 with Technology & Engineering categories.


The publication introduces the foundations of natural language analyses and showcases studies that have applied NLP techniques to make progress on the Sustainable Development Goals. It also reviews specific NLP techniques and concepts, supported by two case studies. The first case study analyzes public sentiments on the coronavirus disease (COVID-19) in the Philippines while the second case study explores the public debate on climate change in Australia.



Practical Natural Language Processing


Practical Natural Language Processing
DOWNLOAD
Author : Sowmya Vajjala
language : en
Publisher: O'Reilly Media
Release Date : 2020-06-17

Practical Natural Language Processing written by Sowmya Vajjala and has been published by O'Reilly Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-06-17 with Computers categories.


Many books and courses tackle natural language processing (NLP) problems with toy use cases and well-defined datasets. But if you want to build, iterate, and scale NLP systems in a business setting and tailor them for particular industry verticals, this is your guide. Software engineers and data scientists will learn how to navigate the maze of options available at each step of the journey. Through the course of the book, authors Sowmya Vajjala, Bodhisattwa Majumder, Anuj Gupta, and Harshit Surana will guide you through the process of building real-world NLP solutions embedded in larger product setups. You’ll learn how to adapt your solutions for different industry verticals such as healthcare, social media, and retail. With this book, you’ll: Understand the wide spectrum of problem statements, tasks, and solution approaches within NLP Implement and evaluate different NLP applications using machine learning and deep learning methods Fine-tune your NLP solution based on your business problem and industry vertical Evaluate various algorithms and approaches for NLP product tasks, datasets, and stages Produce software solutions following best practices around release, deployment, and DevOps for NLP systems Understand best practices, opportunities, and the roadmap for NLP from a business and product leader’s perspective



Mastering Natural Language Processing


Mastering Natural Language Processing
DOWNLOAD
Author : Cybellium
language : en
Publisher: Cybellium Ltd
Release Date :

Mastering Natural Language Processing written by Cybellium and has been published by Cybellium Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on with Computers categories.


Unveil the Secrets of Language Understanding and Generation In the realm of artificial intelligence and communication, Natural Language Processing (NLP) stands as a transformative force that bridges the gap between humans and machines. "Mastering Natural Language Processing" is your definitive guide to comprehending and harnessing the potential of this dynamic field, empowering you to create intelligent language-based applications with precision. About the Book: As technology evolves, the ability to understand and generate human language becomes increasingly essential. "Mastering Natural Language Processing" offers a comprehensive exploration of NLP—a crucial discipline in the world of AI and communication. This book caters to both beginners and experienced learners aiming to excel in NLP concepts, techniques, and applications. Key Features: NLP Fundamentals: Begin by understanding the core principles of Natural Language Processing. Learn about linguistic concepts, tokenization, and language models. Text Classification and Sentiment Analysis: Dive into text analysis techniques. Explore methods for classifying text and determining sentiment, enabling you to understand user opinions and emotions. Named Entity Recognition: Grasp the art of identifying entities in text. Understand how to extract names, places, dates, and other crucial information from unstructured data. Language Generation: Explore techniques for generating human-like language. Learn how to create chatbots, language models, and automated content. Machine Translation: Understand the significance of machine translation. Learn how to build systems that translate text between languages with accuracy. Speech Recognition: Delve into the realm of speech recognition. Explore techniques for converting spoken language into text, enabling voice interfaces and transcription. Question Answering Systems: Grasp the power of question-answering systems. Learn how to build applications that provide answers to user questions based on available data. Real-World Applications: Gain insights into how NLP is applied across industries. From customer service to healthcare, discover the diverse applications of natural language processing. Why This Book Matters: In an age of communication and interaction, mastering NLP offers a competitive advantage. "Mastering Natural Language Processing" empowers data scientists, developers, and technology enthusiasts to leverage NLP concepts, enabling them to create intelligent language-based applications that enhance user experiences and drive innovation. Revolutionize Communication with AI: In the landscape of artificial intelligence, Natural Language Processing is transforming how humans and machines interact. "Mastering Natural Language Processing" equips you with the knowledge needed to leverage NLP concepts, enabling you to create intelligent language-based applications that bridge communication gaps and redefine possibilities. Whether you're a seasoned practitioner or new to the world of NLP, this book will guide you in building a solid foundation for effective language-based solutions. Your journey to mastering Natural Language Processing starts here. © 2023 Cybellium Ltd. All rights reserved. www.cybellium.com



Natural Language Processing In Biomedicine


Natural Language Processing In Biomedicine
DOWNLOAD
Author : Hua Xu
language : en
Publisher: Springer Nature
Release Date : 2024-06-08

Natural Language Processing In Biomedicine written by Hua Xu and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-06-08 with Medical categories.


This textbook covers broad topics within the application of natural language processing (NLP) in biomedicine, and provides in-depth review of the NLP solutions that reveal information embedded in biomedical text. The need for biomedical NLP research and development has grown rapidly in the past two decades as an important field in cognitive informatics. Natural Language Processing in Biomedicine: A Practical Guide introduces the history of the biomedical NLP field and takes the reader through the basic aspects of NLP including different levels of linguistic information and widely used machine learning and deep learning algorithms. The book details common biomedical NLP tasks, such as named entity recognition, concept normalization, relation extraction, text classification, information retrieval, and question answering. The book illustrates the tasks with real-life use cases and introduces real-world datasets, novel machine learning and deep learning algorithms, and large language models. Relevant resources for corpora and medical terminologies are also introduced. The final chapters are devoted to discussing applications of biomedical NLP in healthcare and life sciences. This textbook therefore represents essential reading for students in biomedical informatics programs, as well as for professionals who are conducting research or building biomedical NLP systems.



Natural Language Processing For The Semantic Web


Natural Language Processing For The Semantic Web
DOWNLOAD
Author : Diana Maynard
language : en
Publisher: Springer Nature
Release Date : 2022-05-31

Natural Language Processing For The Semantic Web written by Diana Maynard and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-05-31 with Mathematics categories.


This book introduces core natural language processing (NLP) technologies to non-experts in an easily accessible way, as a series of building blocks that lead the user to understand key technologies, why they are required, and how to integrate them into Semantic Web applications. Natural language processing and Semantic Web technologies have different, but complementary roles in data management. Combining these two technologies enables structured and unstructured data to merge seamlessly. Semantic Web technologies aim to convert unstructured data to meaningful representations, which benefit enormously from the use of NLP technologies, thereby enabling applications such as connecting text to Linked Open Data, connecting texts to each other, semantic searching, information visualization, and modeling of user behavior in online networks. The first half of this book describes the basic NLP processing tools: tokenization, part-of-speech tagging, and morphological analysis, in addition to the main tools required for an information extraction system (named entity recognition and relation extraction) which build on these components. The second half of the book explains how Semantic Web and NLP technologies can enhance each other, for example via semantic annotation, ontology linking, and population. These chapters also discuss sentiment analysis, a key component in making sense of textual data, and the difficulties of performing NLP on social media, as well as some proposed solutions. The book finishes by investigating some applications of these tools, focusing on semantic search and visualization, modeling user behavior, and an outlook on the future.



Natural Language Processing With Tensorflow


Natural Language Processing With Tensorflow
DOWNLOAD
Author : Thushan Ganegedara
language : en
Publisher: Packt Publishing Ltd
Release Date : 2018-05-31

Natural Language Processing With Tensorflow written by Thushan Ganegedara and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-05-31 with Computers categories.


Write modern natural language processing applications using deep learning algorithms and TensorFlow Key Features Focuses on more efficient natural language processing using TensorFlow Covers NLP as a field in its own right to improve understanding for choosing TensorFlow tools and other deep learning approaches Provides choices for how to process and evaluate large unstructured text datasets Learn to apply the TensorFlow toolbox to specific tasks in the most interesting field in artificial intelligence Book Description Natural language processing (NLP) supplies the majority of data available to deep learning applications, while TensorFlow is the most important deep learning framework currently available. Natural Language Processing with TensorFlow brings TensorFlow and NLP together to give you invaluable tools to work with the immense volume of unstructured data in today’s data streams, and apply these tools to specific NLP tasks. Thushan Ganegedara starts by giving you a grounding in NLP and TensorFlow basics. You'll then learn how to use Word2vec, including advanced extensions, to create word embeddings that turn sequences of words into vectors accessible to deep learning algorithms. Chapters on classical deep learning algorithms, like convolutional neural networks (CNN) and recurrent neural networks (RNN), demonstrate important NLP tasks as sentence classification and language generation. You will learn how to apply high-performance RNN models, like long short-term memory (LSTM) cells, to NLP tasks. You will also explore neural machine translation and implement a neural machine translator. After reading this book, you will gain an understanding of NLP and you'll have the skills to apply TensorFlow in deep learning NLP applications, and how to perform specific NLP tasks. What you will learn Core concepts of NLP and various approaches to natural language processing How to solve NLP tasks by applying TensorFlow functions to create neural networks Strategies to process large amounts of data into word representations that can be used by deep learning applications Techniques for performing sentence classification and language generation using CNNs and RNNs About employing state-of-the art advanced RNNs, like long short-term memory, to solve complex text generation tasks How to write automatic translation programs and implement an actual neural machine translator from scratch The trends and innovations that are paving the future in NLP Who this book is for This book is for Python developers with a strong interest in deep learning, who want to learn how to leverage TensorFlow to simplify NLP tasks. Fundamental Python skills are assumed, as well as some knowledge of machine learning and undergraduate-level calculus and linear algebra. No previous natural language processing experience required, although some background in NLP or computational linguistics will be helpful.