[PDF] Natural Language Processing Projects - eBooks Review

Natural Language Processing Projects


Natural Language Processing Projects
DOWNLOAD

Download Natural Language Processing Projects PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Natural Language Processing Projects book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Natural Language Processing Projects


Natural Language Processing Projects
DOWNLOAD
Author : Akshay Kulkarni
language : en
Publisher:
Release Date : 2022

Natural Language Processing Projects written by Akshay Kulkarni and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022 with categories.


Leverage machine learning and deep learning techniques to build fully-fledged natural language processing (NLP) projects. Projects throughout this book grow in complexity and showcase methodologies, optimizing tips, and tricks to solve various business problems. You will use modern Python libraries and algorithms to build end-to-end NLP projects. The book starts with an overview of natural language processing (NLP) and artificial intelligence to provide a quick refresher on algorithms. Next, it covers end-to-end NLP projects beginning with traditional algorithms and projects such as customer review sentiment and emotion detection, topic modeling, and document clustering. From there, it delves into e-commerce related projects such as product categorization using the description of the product, a search engine to retrieve the relevant content, and a content-based recommendation system to enhance user experience. Moving forward, it explains how to build systems to find similar sentences using contextual embedding, summarizing huge documents using recurrent neural networks (RNN), automatic word suggestion using long short-term memory networks (LSTM), and how to build a chatbot using transfer learning. It concludes with an exploration of next-generation AI and algorithms in the research space. By the end of this book, you will have the knowledge needed to solve various business problems using NLP techniques. You will: Implement full-fledged intelligent NLP applications with Python Translate real-world business problem on text data with NLP techniques Leverage machine learning and deep learning techniques to perform smart language processing Gain hands-on experience implementing end-to-end search engine information retrieval, text summarization, chatbots, text generation, document clustering and product classification, and more.



Natural Language Processing Projects


Natural Language Processing Projects
DOWNLOAD
Author : Akshay Kulkarni
language : en
Publisher: Apress
Release Date : 2021-12-04

Natural Language Processing Projects written by Akshay Kulkarni and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-12-04 with Computers categories.


Leverage machine learning and deep learning techniques to build fully-fledged natural language processing (NLP) projects. Projects throughout this book grow in complexity and showcase methodologies, optimizing tips, and tricks to solve various business problems. You will use modern Python libraries and algorithms to build end-to-end NLP projects. The book starts with an overview of natural language processing (NLP) and artificial intelligence to provide a quick refresher on algorithms. Next, it covers end-to-end NLP projects beginning with traditional algorithms and projects such as customer review sentiment and emotion detection, topic modeling, and document clustering. From there, it delves into e-commerce related projects such as product categorization using the description of the product, a search engine to retrieve the relevant content, and a content-based recommendation system to enhance user experience. Moving forward, it explains how to build systems to find similar sentences using contextual embedding, summarizing huge documents using recurrent neural networks (RNN), automatic word suggestion using long short-term memory networks (LSTM), and how to build a chatbot using transfer learning. It concludes with an exploration of next-generation AI and algorithms in the research space. By the end of this book, you will have the knowledge needed to solve various business problems using NLP techniques. What You Will Learn Implement full-fledged intelligent NLP applications with Python Translate real-world business problem on text data with NLP techniques Leverage machine learning and deep learning techniques to perform smart language processing Gain hands-on experience implementing end-to-end search engine information retrieval, text summarization, chatbots, text generation, document clustering and product classification, and more Who This Book Is For Data scientists, machine learning engineers, and deep learning professionals looking to build natural language applications using Python



Real World Natural Language Processing


Real World Natural Language Processing
DOWNLOAD
Author : Masato Hagiwara
language : en
Publisher: Simon and Schuster
Release Date : 2021-12-14

Real World Natural Language Processing written by Masato Hagiwara and has been published by Simon and Schuster this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-12-14 with Computers categories.


Training computers to interpret and generate speech and text is a monumental challenge, and the payoff for reducing labor and improving human/computer interaction is huge! The field of Natural language processing (NLP) is advancing rapidly, with countless new tools and practices. This unique book offers an innovative collection of NLP techniques with applications in machine translation, voice assitants, text generation and more. "Real-world natural language processing" shows you how to build the practical NLP applications that are transforming the way humans and computers work together. Guided by clear explanations of each core NLP topic, you'll create many interesting applications including a sentiment analyzer and a chatbot. Along the way, you'll use Python and open source libraries like AllenNLP and HuggingFace Transformers to speed up your development process.



Applied Natural Language Processing In The Enterprise


Applied Natural Language Processing In The Enterprise
DOWNLOAD
Author : Ankur A. Patel
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2021-05-12

Applied Natural Language Processing In The Enterprise written by Ankur A. Patel and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-05-12 with Computers categories.


NLP has exploded in popularity over the last few years. But while Google, Facebook, OpenAI, and others continue to release larger language models, many teams still struggle with building NLP applications that live up to the hype. This hands-on guide helps you get up to speed on the latest and most promising trends in NLP. With a basic understanding of machine learning and some Python experience, you'll learn how to build, train, and deploy models for real-world applications in your organization. Authors Ankur Patel and Ajay Uppili Arasanipalai guide you through the process using code and examples that highlight the best practices in modern NLP. Use state-of-the-art NLP models such as BERT and GPT-3 to solve NLP tasks such as named entity recognition, text classification, semantic search, and reading comprehension Train NLP models with performance comparable or superior to that of out-of-the-box systems Learn about Transformer architecture and modern tricks like transfer learning that have taken the NLP world by storm Become familiar with the tools of the trade, including spaCy, Hugging Face, and fast.ai Build core parts of the NLP pipeline--including tokenizers, embeddings, and language models--from scratch using Python and PyTorch Take your models out of Jupyter notebooks and learn how to deploy, monitor, and maintain them in production



Digital Transformation Of The Design Construction And Management Processes Of The Built Environment


Digital Transformation Of The Design Construction And Management Processes Of The Built Environment
DOWNLOAD
Author : Bruno Daniotti
language : en
Publisher: Springer Nature
Release Date : 2019-12-30

Digital Transformation Of The Design Construction And Management Processes Of The Built Environment written by Bruno Daniotti and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-12-30 with Technology & Engineering categories.


This open access book focuses on the development of methods, interoperable and integrated ICT tools, and survey techniques for optimal management of the building process. The construction sector is facing an increasing demand for major innovations in terms of digital dematerialization and technologies such as the Internet of Things, big data, advanced manufacturing, robotics, 3D printing, blockchain technologies and artificial intelligence. The demand for simplification and transparency in information management and for the rationalization and optimization of very fragmented and splintered processes is a key driver for digitization. The book describes the contribution of the ABC Department of the Polytechnic University of Milan (Politecnico di Milano) to R&D activities regarding methods and ICT tools for the interoperable management of the different phases of the building process, including design, construction, and management. Informative case studies complement the theoretical discussion. The book will be of interest to all stakeholders in the building process – owners, designers, constructors, and faculty managers – as well as the research sector.



Natural Language Processing With Python And Spacy


Natural Language Processing With Python And Spacy
DOWNLOAD
Author : Yuli Vasiliev
language : en
Publisher: No Starch Press
Release Date : 2020-04-28

Natural Language Processing With Python And Spacy written by Yuli Vasiliev and has been published by No Starch Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-04-28 with Computers categories.


An introduction to natural language processing with Python using spaCy, a leading Python natural language processing library. Natural Language Processing with Python and spaCy will show you how to create NLP applications like chatbots, text-condensing scripts, and order-processing tools quickly and easily. You'll learn how to leverage the spaCy library to extract meaning from text intelligently; how to determine the relationships between words in a sentence (syntactic dependency parsing); identify nouns, verbs, and other parts of speech (part-of-speech tagging); and sort proper nouns into categories like people, organizations, and locations (named entity recognizing). You'll even learn how to transform statements into questions to keep a conversation going. You'll also learn how to: • Work with word vectors to mathematically find words with similar meanings (Chapter 5) • Identify patterns within data using spaCy's built-in displaCy visualizer (Chapter 7) • Automatically extract keywords from user input and store them in a relational database (Chapter 9) • Deploy a chatbot app to interact with users over the internet (Chapter 11) "Try This" sections in each chapter encourage you to practice what you've learned by expanding the book's example scripts to handle a wider range of inputs, add error handling, and build professional-quality applications. By the end of the book, you'll be creating your own NLP applications with Python and spaCy.



The Natural Language Processing Workshop


The Natural Language Processing Workshop
DOWNLOAD
Author : Rohan Chopra
language : en
Publisher:
Release Date : 2020-07

The Natural Language Processing Workshop written by Rohan Chopra and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-07 with Computers categories.


The Natural Language Processing Workshop takes you through fundamental NLP techniques, such as preparing datasets, collecting text, extracting text, and sentiment analysis. As you progress, you'll get to grips with creating your own chatbots and dynamic models.



Deep Learning For Natural Language Processing


Deep Learning For Natural Language Processing
DOWNLOAD
Author : Jason Brownlee
language : en
Publisher: Machine Learning Mastery
Release Date : 2017-11-21

Deep Learning For Natural Language Processing written by Jason Brownlee and has been published by Machine Learning Mastery this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-11-21 with Computers categories.


Deep learning methods are achieving state-of-the-art results on challenging machine learning problems such as describing photos and translating text from one language to another. In this new laser-focused Ebook, finally cut through the math, research papers and patchwork descriptions about natural language processing. Using clear explanations, standard Python libraries and step-by-step tutorial lessons you will discover what natural language processing is, the promise of deep learning in the field, how to clean and prepare text data for modeling, and how to develop deep learning models for your own natural language processing projects.



Getting Started With Natural Language Processing


Getting Started With Natural Language Processing
DOWNLOAD
Author : Ekaterina Kochmar
language : en
Publisher: Simon and Schuster
Release Date : 2022-11-15

Getting Started With Natural Language Processing written by Ekaterina Kochmar and has been published by Simon and Schuster this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-11-15 with Computers categories.


Hit the ground running with this in-depth introduction to the NLP skills and techniques that allow your computers to speak human. In Getting Started with Natural Language Processing you’ll learn about: Fundamental concepts and algorithms of NLP Useful Python libraries for NLP Building a search algorithm Extracting information from raw text Predicting sentiment of an input text Author profiling Topic labeling Named entity recognition Getting Started with Natural Language Processing is an enjoyable and understandable guide that helps you engineer your first NLP algorithms. Your tutor is Dr. Ekaterina Kochmar, lecturer at the University of Bath, who has helped thousands of students take their first steps with NLP. Full of Python code and hands-on projects, each chapter provides a concrete example with practical techniques that you can put into practice right away. If you’re a beginner to NLP and want to upgrade your applications with functions and features like information extraction, user profiling, and automatic topic labeling, this is the book for you. About the technology From smart speakers to customer service chatbots, apps that understand text and speech are everywhere. Natural language processing, or NLP, is the key to this powerful form of human/computer interaction. And a new generation of tools and techniques make it easier than ever to get started with NLP! About the book Getting Started with Natural Language Processing teaches you how to upgrade user-facing applications with text and speech-based features. From the accessible explanations and hands-on examples in this book you’ll learn how to apply NLP to sentiment analysis, user profiling, and much more. As you go, each new project builds on what you’ve previously learned, introducing new concepts and skills. Handy diagrams and intuitive Python code samples make it easy to get started—even if you have no background in machine learning! What's inside Fundamental concepts and algorithms of NLP Extracting information from raw text Useful Python libraries Topic labeling Building a search algorithm About the reader You’ll need basic Python skills. No experience with NLP required. About the author Ekaterina Kochmar is a lecturer at the Department of Computer Science of the University of Bath, where she is part of the AI research group. Table of Contents 1 Introduction 2 Your first NLP example 3 Introduction to information search 4 Information extraction 5 Author profiling as a machine-learning task 6 Linguistic feature engineering for author profiling 7 Your first sentiment analyzer using sentiment lexicons 8 Sentiment analysis with a data-driven approach 9 Topic analysis 10 Topic modeling 11 Named-entity recognition



Deep Learning For Coders With Fastai And Pytorch


Deep Learning For Coders With Fastai And Pytorch
DOWNLOAD
Author : Jeremy Howard
language : en
Publisher: O'Reilly Media
Release Date : 2020-06-29

Deep Learning For Coders With Fastai And Pytorch written by Jeremy Howard and has been published by O'Reilly Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-06-29 with Computers categories.


Deep learning is often viewed as the exclusive domain of math PhDs and big tech companies. But as this hands-on guide demonstrates, programmers comfortable with Python can achieve impressive results in deep learning with little math background, small amounts of data, and minimal code. How? With fastai, the first library to provide a consistent interface to the most frequently used deep learning applications. Authors Jeremy Howard and Sylvain Gugger, the creators of fastai, show you how to train a model on a wide range of tasks using fastai and PyTorch. You’ll also dive progressively further into deep learning theory to gain a complete understanding of the algorithms behind the scenes. Train models in computer vision, natural language processing, tabular data, and collaborative filtering Learn the latest deep learning techniques that matter most in practice Improve accuracy, speed, and reliability by understanding how deep learning models work Discover how to turn your models into web applications Implement deep learning algorithms from scratch Consider the ethical implications of your work Gain insight from the foreword by PyTorch cofounder, Soumith Chintala