[PDF] Natural Language Processing With Python Cookbook - eBooks Review

Natural Language Processing With Python Cookbook


Natural Language Processing With Python Cookbook
DOWNLOAD

Download Natural Language Processing With Python Cookbook PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Natural Language Processing With Python Cookbook book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Python Natural Language Processing Cookbook


Python Natural Language Processing Cookbook
DOWNLOAD
Author : ZHENYA. ANTIC
language : en
Publisher:
Release Date : 2021-03-19

Python Natural Language Processing Cookbook written by ZHENYA. ANTIC and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-03-19 with categories.


Get to grips with solving real-world NLP problems, such as dependency parsing, information extraction, topic modeling, and text data visualization Key Features: Analyze varying complexities of text using popular Python packages such as NLTK, spaCy, sklearn, and gensim Implement common and not-so-common linguistic processing tasks using Python libraries Overcome the common challenges faced while implementing NLP pipelines Book Description: Python is the most widely used language for natural language processing (NLP) thanks to its extensive tools and libraries for analyzing text and extracting computer-usable data. This book will take you through a range of techniques for text processing, from basics such as parsing the parts of speech to complex topics such as topic modeling, text classification, and visualization. Starting with an overview of NLP, the book presents recipes for dividing text into sentences, stemming and lemmatization, removing stopwords, and parts of speech tagging to help you to prepare your data. You'll then learn ways of extracting and representing grammatical information, such as dependency parsing and anaphora resolution, discover different ways of representing the semantics using bag-of-words, TF-IDF, word embeddings, and BERT, and develop skills for text classification using keywords, SVMs, LSTMs, and other techniques. As you advance, you'll also see how to extract information from text, implement unsupervised and supervised techniques for topic modeling, and perform topic modeling of short texts, such as tweets. Additionally, the book shows you how to develop chatbots using NLTK and Rasa and visualize text data. By the end of this NLP book, you'll have developed the skills to use a powerful set of tools for text processing. What You Will Learn: Become well-versed with basic and advanced NLP techniques in Python Represent grammatical information in text using spaCy, and semantic information using bag-of-words, TF-IDF, and word embeddings Perform text classification using different methods, including SVMs and LSTMs Explore different techniques for topic modeling such as K-means, LDA, NMF, and BERT Work with visualization techniques such as NER and word clouds for different NLP tools Build a basic chatbot using NLTK and Rasa Extract information from text using regular expression techniques and statistical and deep learning tools Who this book is for: This book is for data scientists and professionals who want to learn how to work with text. Intermediate knowledge of Python will help you to make the most out of this book. If you are an NLP practitioner, this book will serve as a code reference when working on your projects.



Natural Language Processing With Python Cookbook


Natural Language Processing With Python Cookbook
DOWNLOAD
Author : Krishna Bhavsar
language : en
Publisher:
Release Date : 2017-11-24

Natural Language Processing With Python Cookbook written by Krishna Bhavsar and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-11-24 with Computers categories.


Learn the tricks and tips that will help you design Text Analytics solutionsAbout This Book* Independent recipes that will teach you how to efficiently perform Natural Language Processing in Python* Use dictionaries to create your own named entities using this easy-to-follow guide* Learn how to implement NLTK for various scenarios with the help of example-rich recipes to take you beyond basic Natural Language ProcessingWho This Book Is ForThis book is intended for data scientists, data analysts, and data science professionals who want to upgrade their existing skills to implement advanced text analytics using NLP. Some basic knowledge of Natural Language Processing is recommended.What You Will Learn* Explore corpus management using internal and external corpora* Learn WordNet usage and a couple of simple application assignments using WordNet* Operate on raw text* Learn to perform tokenization, stemming, lemmatization, and spelling corrections, stop words removals, and more* Understand regular expressions for pattern matching* Learn to use and write your own POS taggers and grammars* Learn to evaluate your own trained models* Explore Deep Learning techniques in NLP* Generate Text from Nietzsche's writing using LSTM* Utilize the BABI dataset and LSTM to model episodesIn DetailNatural Language Processing (NLP) is a field of computer science, artificial intelligence, and computational linguistics concerned with the interactions between computers and human (natural) languages; in particular, it's about programming computers to fruitfully process large natural language corpora.This book includes unique recipes that will teach you various aspects of performing Natural Language Processing with NLTK-the leading Python platform for the task. You will come across various recipes during the course, covering (among other topics) natural language understanding, Natural Language Processing, and syntactic analysis. You will learn how to understand language, plan sentences, and work around various ambiguities. You will learn how to efficiently use NLTK and implement text classification, identify parts of speech, tag words, and more. You will also learn how to analyze sentence structures and master lexical analysis, syntactic and semantic analysis, pragmatic analysis, and the application of deep learning techniques.By the end of this book, you will have all the knowledge you need to implement Natural Language Processing with Python.Style and ApproachThis book's rich collection of recipes will come in handy when you are working with Natural Language Processing with Python. Addressing your common and not-so-common pain points, this is a book that you must have on the shelf.



Hands On Natural Language Processing With Python


Hands On Natural Language Processing With Python
DOWNLOAD
Author : Rajesh Arumugam
language : en
Publisher: Packt Publishing Ltd
Release Date : 2018-07-18

Hands On Natural Language Processing With Python written by Rajesh Arumugam and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-07-18 with Computers categories.


Foster your NLP applications with the help of deep learning, NLTK, and TensorFlow Key Features Weave neural networks into linguistic applications across various platforms Perform NLP tasks and train its models using NLTK and TensorFlow Boost your NLP models with strong deep learning architectures such as CNNs and RNNs Book Description Natural language processing (NLP) has found its application in various domains, such as web search, advertisements, and customer services, and with the help of deep learning, we can enhance its performances in these areas. Hands-On Natural Language Processing with Python teaches you how to leverage deep learning models for performing various NLP tasks, along with best practices in dealing with today’s NLP challenges. To begin with, you will understand the core concepts of NLP and deep learning, such as Convolutional Neural Networks (CNNs), recurrent neural networks (RNNs), semantic embedding, Word2vec, and more. You will learn how to perform each and every task of NLP using neural networks, in which you will train and deploy neural networks in your NLP applications. You will get accustomed to using RNNs and CNNs in various application areas, such as text classification and sequence labeling, which are essential in the application of sentiment analysis, customer service chatbots, and anomaly detection. You will be equipped with practical knowledge in order to implement deep learning in your linguistic applications using Python's popular deep learning library, TensorFlow. By the end of this book, you will be well versed in building deep learning-backed NLP applications, along with overcoming NLP challenges with best practices developed by domain experts. What you will learn Implement semantic embedding of words to classify and find entities Convert words to vectors by training in order to perform arithmetic operations Train a deep learning model to detect classification of tweets and news Implement a question-answer model with search and RNN models Train models for various text classification datasets using CNN Implement WaveNet a deep generative model for producing a natural-sounding voice Convert voice-to-text and text-to-voice Train a model to convert speech-to-text using DeepSpeech Who this book is for Hands-on Natural Language Processing with Python is for you if you are a developer, machine learning or an NLP engineer who wants to build a deep learning application that leverages NLP techniques. This comprehensive guide is also useful for deep learning users who want to extend their deep learning skills in building NLP applications. All you need is the basics of machine learning and Python to enjoy the book.



Natural Language Processing With Python


Natural Language Processing With Python
DOWNLOAD
Author : Steven Bird
language : en
Publisher:
Release Date : 2009

Natural Language Processing With Python written by Steven Bird and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009 with categories.


This book offers a highly accessible introduction to natural language processing, the field that supports a variety of language technologies, from predictive text and email filtering to automatic summarization and translation. With it, you'll learn how to write Python programs that work with large collections of unstructured text. You'll access richly annotated datasets using a comprehensive range of linguistic data structures, and you'll understand the main algorithms for analyzing the content and structure of written communication.



Python Natural Language Processing


Python Natural Language Processing
DOWNLOAD
Author : Jalaj Thanaki
language : en
Publisher:
Release Date : 2017-07-31

Python Natural Language Processing written by Jalaj Thanaki and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-07-31 with Machine learning categories.


Leverage the power of machine learning and deep learning to extract information from text dataAbout This Book* Implement Machine Learning and Deep Learning techniques for efficient natural language processing* Get started with NLTK and implement NLP in your applications with ease* Understand and interpret human languages with the power of text analysis via PythonWho This Book Is ForThis book is intended for Python developers who wish to start with natural language processing and want to make their applications smarter by implementing NLP in them.What You Will Learn* Focus on Python programming paradigms, which are used to develop NLP applications* Understand corpus analysis and different types of data attribute.* Learn NLP using Python libraries such as NLTK, Polyglot, SpaCy, Standford CoreNLP and so on* Learn about Features Extraction and Feature selection as part of Features Engineering.* Explore the advantages of vectorization in Deep Learning.* Get a better understanding of the architecture of a rule-based system.* Optimize and fine-tune Supervised and Unsupervised Machine Learning algorithms for NLP problems.* Identify Deep Learning techniques for Natural Language Processing and Natural Language Generation problems.In DetailThis book starts off by laying the foundation for Natural Language Processing and why Python is one of the best options to build an NLP-based expert system with advantages such as Community support, availability of frameworks and so on. Later it gives you a better understanding of available free forms of corpus and different types of dataset. After this, you will know how to choose a dataset for natural language processing applications and find the right NLP techniques to process sentences in datasets and understand their structure. You will also learn how to tokenize different parts of sentences and ways to analyze them.During the course of the book, you will explore the semantic as well as syntactic analysis of text. You will understand how to solve various ambiguities in processing human language and will come across various scenarios while performing text analysis.You will learn the very basics of getting the environment ready for natural language processing, move on to the initial setup, and then quickly understand sentences and language parts. You will learn the power of Machine Learning and Deep Learning to extract information from text data.By the end of the book, you will have a clear understanding of natural language processing and will have worked on multiple examples that implement NLP in the real world.Style and approachThis book teaches the readers various aspects of natural language Processing using NLTK. It takes the reader from the basic to advance level in a smooth way.



Python 3 Text Processing With Nltk 3 Cookbook


Python 3 Text Processing With Nltk 3 Cookbook
DOWNLOAD
Author : Jacob Perkins
language : en
Publisher: Packt Publishing Ltd
Release Date : 2014-08-26

Python 3 Text Processing With Nltk 3 Cookbook written by Jacob Perkins and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-08-26 with Computers categories.


This book is intended for Python programmers interested in learning how to do natural language processing. Maybe you’ve learned the limits of regular expressions the hard way, or you’ve realized that human language cannot be deterministically parsed like a computer language. Perhaps you have more text than you know what to do with, and need automated ways to analyze and structure that text. This Cookbook will show you how to train and use statistical language models to process text in ways that are practically impossible with standard programming tools. A basic knowledge of Python and the basic text processing concepts is expected. Some experience with regular expressions will also be helpful.



Practical Natural Language Processing


Practical Natural Language Processing
DOWNLOAD
Author : Sowmya Vajjala
language : en
Publisher: O'Reilly Media
Release Date : 2020-06-17

Practical Natural Language Processing written by Sowmya Vajjala and has been published by O'Reilly Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-06-17 with Computers categories.


Many books and courses tackle natural language processing (NLP) problems with toy use cases and well-defined datasets. But if you want to build, iterate, and scale NLP systems in a business setting and tailor them for particular industry verticals, this is your guide. Software engineers and data scientists will learn how to navigate the maze of options available at each step of the journey. Through the course of the book, authors Sowmya Vajjala, Bodhisattwa Majumder, Anuj Gupta, and Harshit Surana will guide you through the process of building real-world NLP solutions embedded in larger product setups. You’ll learn how to adapt your solutions for different industry verticals such as healthcare, social media, and retail. With this book, you’ll: Understand the wide spectrum of problem statements, tasks, and solution approaches within NLP Implement and evaluate different NLP applications using machine learning and deep learning methods Fine-tune your NLP solution based on your business problem and industry vertical Evaluate various algorithms and approaches for NLP product tasks, datasets, and stages Produce software solutions following best practices around release, deployment, and DevOps for NLP systems Understand best practices, opportunities, and the roadmap for NLP from a business and product leader’s perspective



Natural Language Processing With Tensorflow


Natural Language Processing With Tensorflow
DOWNLOAD
Author : Thushan Ganegedara
language : en
Publisher: Packt Publishing Ltd
Release Date : 2018-05-31

Natural Language Processing With Tensorflow written by Thushan Ganegedara and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-05-31 with Computers categories.


Write modern natural language processing applications using deep learning algorithms and TensorFlow Key Features Focuses on more efficient natural language processing using TensorFlow Covers NLP as a field in its own right to improve understanding for choosing TensorFlow tools and other deep learning approaches Provides choices for how to process and evaluate large unstructured text datasets Learn to apply the TensorFlow toolbox to specific tasks in the most interesting field in artificial intelligence Book Description Natural language processing (NLP) supplies the majority of data available to deep learning applications, while TensorFlow is the most important deep learning framework currently available. Natural Language Processing with TensorFlow brings TensorFlow and NLP together to give you invaluable tools to work with the immense volume of unstructured data in today’s data streams, and apply these tools to specific NLP tasks. Thushan Ganegedara starts by giving you a grounding in NLP and TensorFlow basics. You'll then learn how to use Word2vec, including advanced extensions, to create word embeddings that turn sequences of words into vectors accessible to deep learning algorithms. Chapters on classical deep learning algorithms, like convolutional neural networks (CNN) and recurrent neural networks (RNN), demonstrate important NLP tasks as sentence classification and language generation. You will learn how to apply high-performance RNN models, like long short-term memory (LSTM) cells, to NLP tasks. You will also explore neural machine translation and implement a neural machine translator. After reading this book, you will gain an understanding of NLP and you'll have the skills to apply TensorFlow in deep learning NLP applications, and how to perform specific NLP tasks. What you will learn Core concepts of NLP and various approaches to natural language processing How to solve NLP tasks by applying TensorFlow functions to create neural networks Strategies to process large amounts of data into word representations that can be used by deep learning applications Techniques for performing sentence classification and language generation using CNNs and RNNs About employing state-of-the art advanced RNNs, like long short-term memory, to solve complex text generation tasks How to write automatic translation programs and implement an actual neural machine translator from scratch The trends and innovations that are paving the future in NLP Who this book is for This book is for Python developers with a strong interest in deep learning, who want to learn how to leverage TensorFlow to simplify NLP tasks. Fundamental Python skills are assumed, as well as some knowledge of machine learning and undergraduate-level calculus and linear algebra. No previous natural language processing experience required, although some background in NLP or computational linguistics will be helpful.



Natural Language Processing Recipes


Natural Language Processing Recipes
DOWNLOAD
Author : Akshay Kulkarni
language : en
Publisher: Apress
Release Date : 2021-08-26

Natural Language Processing Recipes written by Akshay Kulkarni and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-08-26 with Computers categories.


Focus on implementing end-to-end projects using Python and leverage state-of-the-art algorithms. This book teaches you to efficiently use a wide range of natural language processing (NLP) packages to: implement text classification, identify parts of speech, utilize topic modeling, text summarization, sentiment analysis, information retrieval, and many more applications of NLP. The book begins with text data collection, web scraping, and the different types of data sources. It explains how to clean and pre-process text data, and offers ways to analyze data with advanced algorithms. You then explore semantic and syntactic analysis of the text. Complex NLP solutions that involve text normalization are covered along with advanced pre-processing methods, POS tagging, parsing, text summarization, sentiment analysis, word2vec, seq2seq, and much more. The book presents the fundamentals necessary for applications of machine learning and deep learning in NLP. This second edition goes over advanced techniques to convert text to features such as Glove, Elmo, Bert, etc. It also includes an understanding of how transformers work, taking sentence BERT and GPT as examples. The final chapters explain advanced industrial applications of NLP with solution implementation and leveraging the power of deep learning techniques for NLP problems. It also employs state-of-the-art advanced RNNs, such as long short-term memory, to solve complex text generation tasks. After reading this book, you will have a clear understanding of the challenges faced by different industries and you will have worked on multiple examples of implementing NLP in the real world. What You Will Learn Know the core concepts of implementing NLP and various approaches to natural language processing (NLP), including NLP using Python libraries such as NLTK, textblob, SpaCy, Standford CoreNLP, and more Implement text pre-processing and feature engineering in NLP, including advanced methods of feature engineering Understand and implement the concepts of information retrieval, text summarization, sentiment analysis, text classification, and other advanced NLP techniques leveraging machine learning and deep learning Who This Book Is For Data scientists who want to refresh and learn various concepts of natural language processing (NLP) through coding exercises



Mastering Natural Language Processing With Python


Mastering Natural Language Processing With Python
DOWNLOAD
Author : Deepti Chopra
language : en
Publisher: Packt Publishing
Release Date : 2016-06-10

Mastering Natural Language Processing With Python written by Deepti Chopra and has been published by Packt Publishing this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-06-10 with Computers categories.


Maximize your NLP capabilities while creating amazing NLP projects in PythonAbout This Book* Learn to implement various NLP tasks in Python* Gain insights into the current and budding research topics of NLP* This is a comprehensive step-by-step guide to help students and researchers create their own projects based on real-life applicationsWho This Book Is ForThis book is for intermediate level developers in NLP with a reasonable knowledge level and understanding of Python.What You Will Learn* Implement string matching algorithms and normalization techniques* Implement statistical language modeling techniques* Get an insight into developing a stemmer, lemmatizer, morphological analyzer, and morphological generator* Develop a search engine and implement POS tagging concepts and statistical modeling concepts involving the n gram approach* Familiarize yourself with concepts such as the Treebank construct, CFG construction, the CYK Chart Parsing algorithm, and the Earley Chart Parsing algorithm* Develop an NER-based system and understand and apply the concepts of sentiment analysis* Understand and implement the concepts of Information Retrieval and text summarization* Develop a Discourse Analysis System and Anaphora Resolution based systemIn DetailNatural Language Processing is one of the fields of computational linguistics and artificial intelligence that is concerned with human-computer interaction. It provides a seamless interaction between computers and human beings and gives computers the ability to understand human speech with the help of machine learning.This book will give you expertise on how to employ various NLP tasks in Python, giving you an insight into the best practices when designing and building NLP-based applications using Python. It will help you become an expert in no time and assist you in creating your own NLP projects using NLTK.You will sequentially be guided through applying machine learning tools to develop various models. We'll give you clarity on how to create training data and how to implement major NLP applications such as Named Entity Recognition, Question Answering System, Discourse Analysis, Transliteration, Word Sense disambiguation, Information Retrieval, Sentiment Analysis, Text Summarization, and Anaphora Resolution.